

<u>Remerciements</u>: Cette campagne de jaugeages a été réalisée dans le cadre du projet Karst-Huveaune. Ce projet bénéficie du soutien financier de la Région Sud, du Conseil Départemental des Bouches-du-Rhône, de l'Agence de l'Eau Rhône-Méditerranée-Corse, de la Métropole Aix-Marseille-Provence et du partenariat avec le Syndicat Intercommunal du bassin versant de l'Huveaune. Cette campagne n'aurait pu avoir lieu sans la collaboration, sur le terrain, de : B.Arfib et Philippe Maurel.

Financement et partenaires :

1) Introduction	<u>p 4</u>
2) <u>Les points de mesure de la campagne de jaugeages</u>	p 6
3) Matériel et méthode	p 7
3.1) Mesure de débit	p 7
3.1.1) Principe et méthodologie du jaugeage chimique	p 7
3.1.2) Jaugeage au courantomètre électromagnétique	p 8
3.2) Mesure ponctuelle de la conductivité électrique et température	p 8
4) <u>Les mesures</u>	p 9
4.1) Secteur 1 : Aubagne - Pont de l'Étoile - Gémenos	p 9
4.2) Secteur 2 : Roquevaire / Auriol	p 14
4.3) Secteur 3 : Pujol / Moulin de Redon	p 20
4.4) Secteur 4 : Saint-Zacharie	p 24
5) Tableaux de synthèse de la campagne de jaugeages du 16 au 17/12/19 sur l'Huveaune et ses affluents	p 29
6) <u>Discussion - conclusion</u>	p 31
7) Bibliographie	p 35
8) Annexes	p 36

Pour citer ce rapport : Thierry Lamarque (février 2020), Jaugeages sur l'Huveaune et ses affluents de Saint-Zacharie à Aubagne, Campagne du 16 et 17/12/2019 - Projet Karst-Huveaune - 72 pages.

1) Introduction

Le projet de recherche multipartenarial Karst-Huveaune, dirigé par l'université Aix-Marseille, porte sur la caractérisation de la ressource en eau souterraine du bassin de l'Huveaune dans les aquifères carbonatés karstiques. Il intègre des données multiples (géologie, karstologie, hydrogéologie, tests en forages, hydrochimie) pour une meilleure compréhension du fonctionnement actuel et futur des hydrosystèmes souterrains entre la Sainte-Baume et la mer, et leurs relations avec les cours d'eau de surface.

Dans le cadre de ce projet, une campagne de jaugeages de l'Huveaune et ses affluents a été effectuée entre le 16/12/19 et le 17/12/19 d'Aubagne à Saint-Zacharie, en incluant également la commune de Gémenos. En effet, il n'existe que peu de données. Bien que l'Huveaune soit déjà équipée de 3 stations de jaugeages par la DREAL (voir annexes), concernant les autres écoulements de surface, aucune étude ne fait leur synthèse.

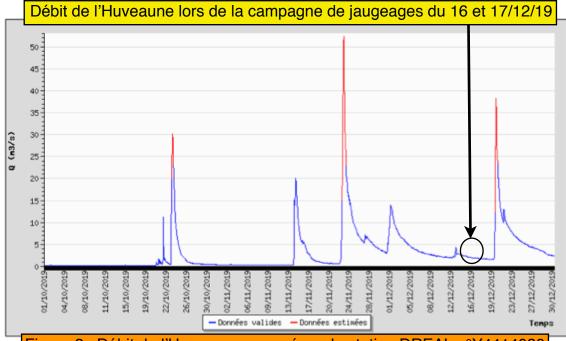
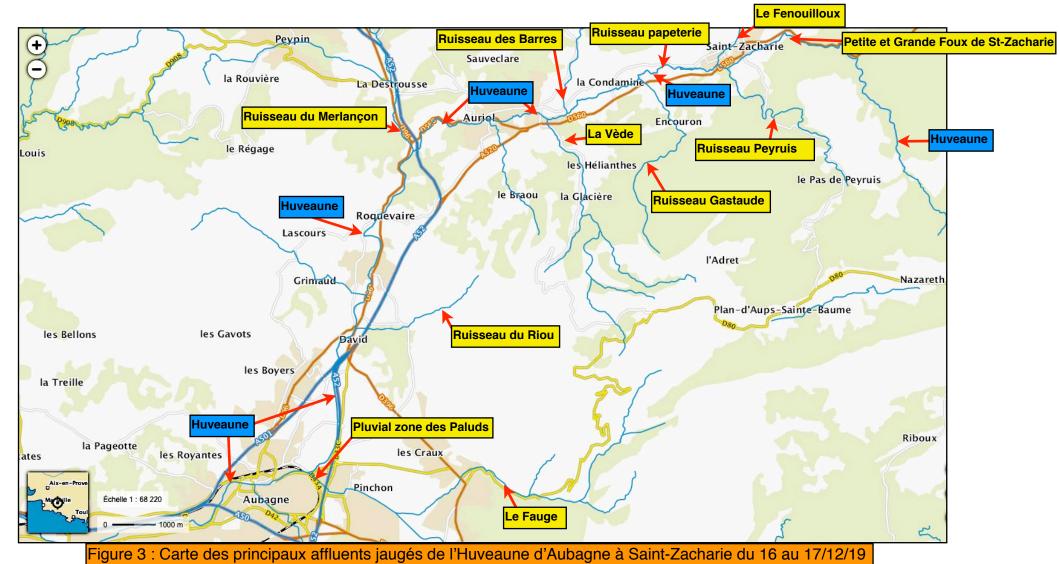


Figure 2 : Débit de l'Huveaune mesuré par la station DREAL n°Y4414030 à Roquevaire entre le 01/10/2019 et le 31/12/2019

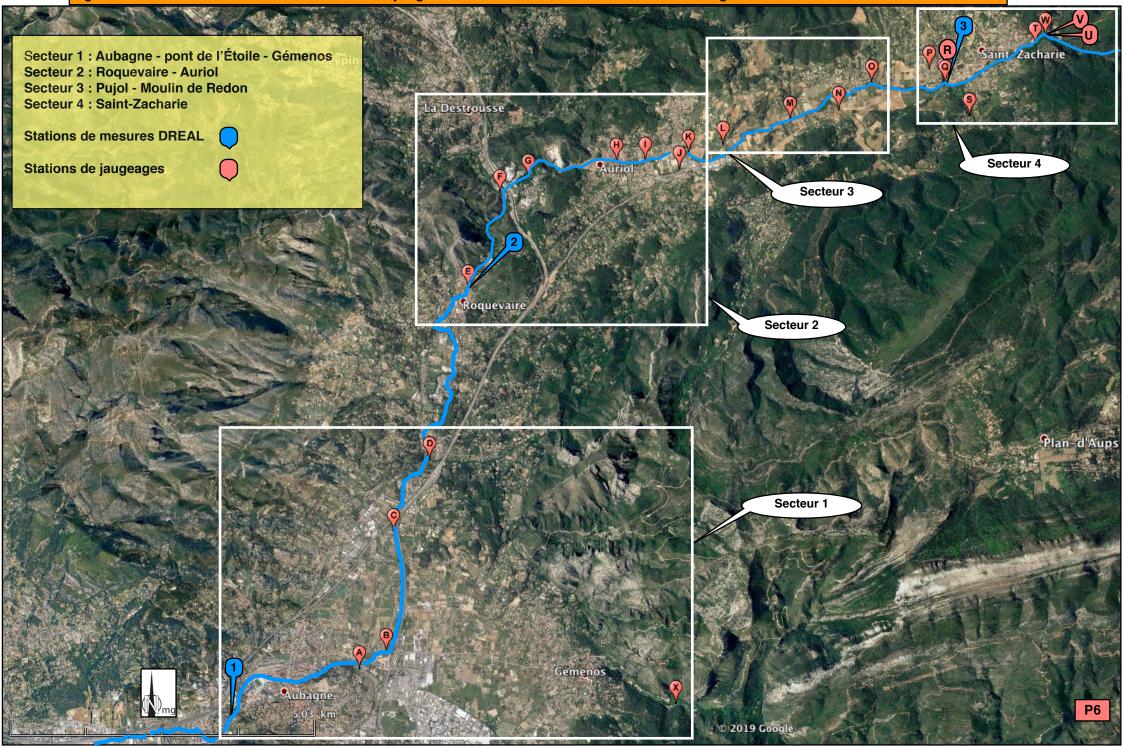
Le but de la présente campagne est de fournir des données de débit en hautes-eaux. Ces données serviront d'une part comme base pour la réflexion sur les bilans à l'échelle du bassin, et d'autre part pour établir les différentes zones de pertes et /ou arrivées d'eaux occultes.


Le présent rapport s'articule en trois parties : une présentation de la zone d'étude, un rappel des méthodes mises en application pour la mesure des débits, et enfin la partie exposant les résultats pour chaque point de mesure. Les points de mesure ont été regroupés par secteurs géographiques.

2) Les points de mesure de la campagne de jaugeages

Cette campagne de jaugeages s'est déroulée sur 2 jours de l'aval (Aubagne) vers l'amont (Saint-Zacharie). Des mesures de la conductivité électrique et la température ont été également effectuées sur chaque stations (figure 3 bis).

Nous avons mesuré et/ou estimé le débit sur 13 affluents (figure 3) de l'Huveaune : le torrent Fauge, le pluvial des Paluds, le ruisseau du Riou, le ruisseau du Merlançon, le ruisseau de la Vède, le ruisseau des Barres, le ruisseau de la Gastaude, le ruisseau de la Papeterie, le ruisseau du Fossé, le vallat du Fenouilloux, le ruisseau de Peyruis, la grande et petite Foux de Saint-Zacharie (Sources).


Nous avons effectué 23 jaugeages réparties sur l'Huveaune et ses affluents (figure 3 bis).

Aix*Marseille Université

Figure 3 bis : Position des différents secteurs jaugés sur l'Huveaune et ses affluents d'Aubagne à Saint-Zacharie du 16 au 17/12/19

3) Matériel et méthode

3.1) Mesure de débit

Le débit exprime le volume de fluide passant à travers une section transversale d'un cours d'eau pendant un certain laps de temps. Le débit est directement lié à la vitesse d'écoulement de l'eau dans le cours d'eau à travers la section transversale. La mesure du débit est réalisée sur le terrain par deux méthodes : par injection instantanée de sel, ou au courantomètre.

3.1.1) Principe et méthodologie du jaugeage chimique

Le principe général consiste à injecter dans la rivière une solution concentrée d'un traceur (sel) et à rechercher dans quelle proportion cette solution a été diluée par la rivière, grâce à un conductimètre de terrain ou une sonde CTD à l'aval du point d'injection.

- Le débit est alors obtenu par intégration de la concentration au cours du temps.
- L'injection s'effectue sous forme d'une solution concentrée (sel pour les faibles débits), de façon quasi instantanée.
- Cette dilution est notamment fonction du débit, supposé constant le long du tronçon concerné pendant la durée de la mesure.

Dans cette Campagne, on injecte en un point du cours d'eau une masse connue de sel (NaCl) diluée dans un volume d'eau (préalablement dissous dans un seau d'eau) de la rivière.

On place la sonde conductimétrique (CTD diver) en aval de l'injection, à une distance suffisamment longue pour que le mélange soit bon. La sonde mesure la conductivité électrique de l'eau au cours du passage du nuage de sel. On peut alors tracer la courbe conductivité en fonction du temps.

Une relation linéaire existe entre la conductivité de l'eau et sa concentration en sel dissous. On peut donc en déduire la courbe concentration en fonction du temps. Le débit est alors obtenu par intégration de la concentration au cours du temps traité par logiciel.

3.1.2) Jaugeage au courantomètre électromagnétique

Pour ce type de jaugeage, nous utiliserons le courantomètre Flomate 2000.

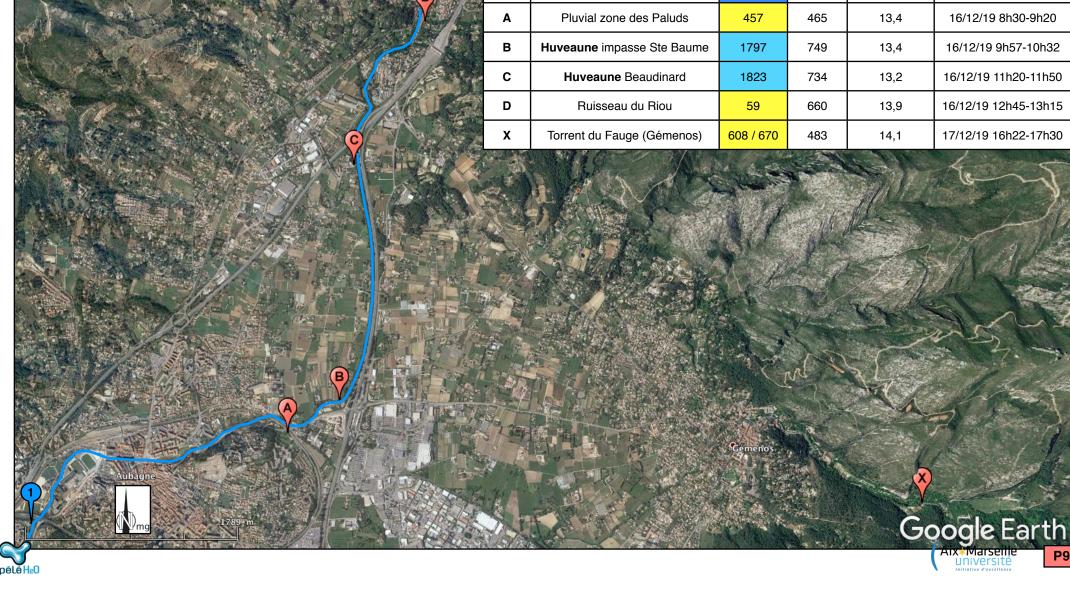
Il mesure la vitesse d'écoulement d'un fluide conducteur tel que l'eau selon le principe de "Faraday" (voir principe en annexe) à l'aide d'un capteur électromagnétique directionnel.

Pour déterminer le débit d'un cours d'eau par le biais d'un courantomètre, il nous faut mesurer sur une ligne droite perpendiculaire à l'axe du cours d'eau, la vitesse du courant, en un certain nombre de points (situés le long de verticales judicieusement réparties sur la largeur du cours d'eau), tout en mesurant la profondeur.

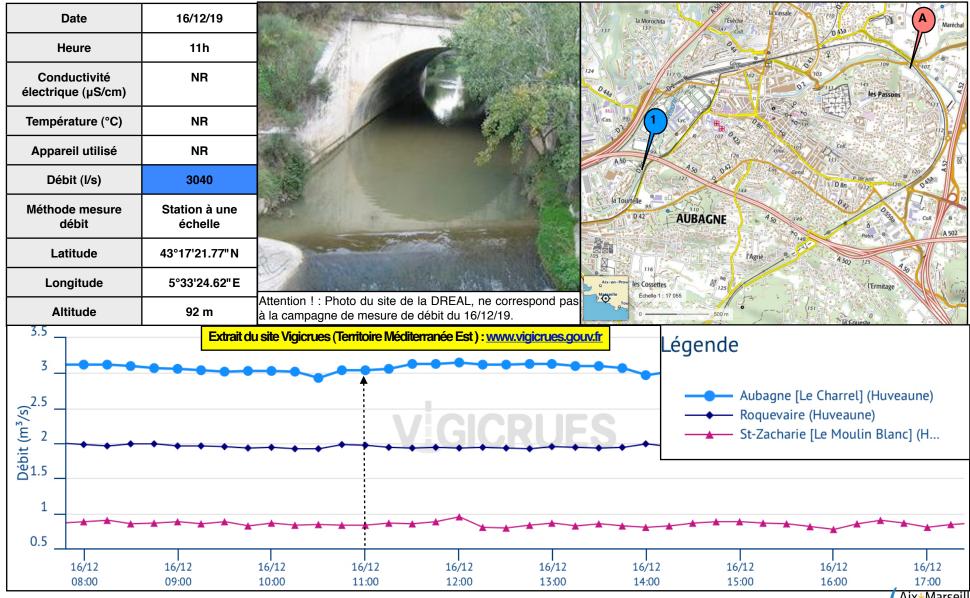
Puis, en faisant la somme des produits des vitesses par les aires auxquelles elles s'appliquent, nous en déduisons le débit.

Le jaugeage est alors effectué point par point ou par intégration, puis les données recueillies sont traitées par logiciel pour calculer le débit.

3.2) Mesure ponctuelle de la conductivité électrique et température

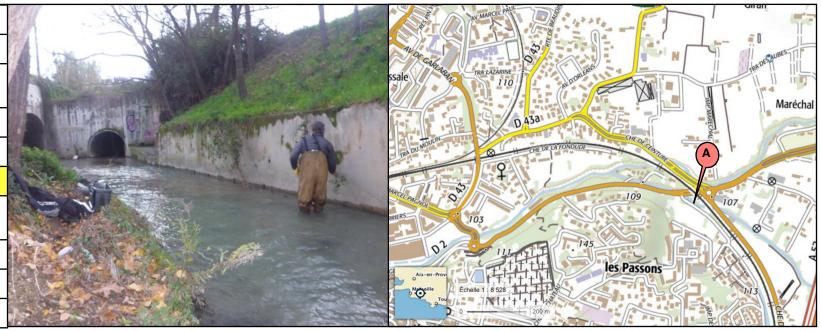

La conductivité électrique (CE), la température (T) sont mesurées à l'aide d'un conductimètre de terrain WTW 315i. La conductivité électrique est donnée automatiquement par l'appareil corrigée pour une température de référence de 25°C.

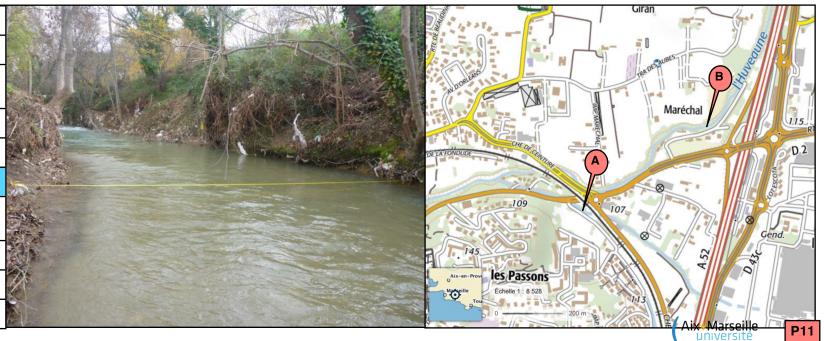
4) Les mesures


4.1) Secteur 1 : Aubagne - Pont de l'Étoile - Gémenos

Le secteur 1 (figure 5) se situe entre les communes et lieux-dits suivants : Aubagne, Pont de l'Étoile et Gémenos. Figure 5 : Localisation des points de mesure du secteur Aubagne - Pont de l'Étoile - Gémenos le 16 et 17/12/19 **Point** CE **Température** Nom station Débit Date / heure (µS/cm) (l/s) (°C) Le Charrel (DREAL) NR 16/12/19 à 11h00 3040 NR Pluvial zone des Paluds 16/12/19 8h30-9h20 457 465 13,4 Huveaune impasse Ste Baume 13,4 В 1797 749 16/12/19 9h57-10h32 С **Huveaune** Beaudinard 16/12/19 11h20-11h50 1823 734 13.2 D Ruisseau du Riou 660 16/12/19 12h45-13h15 59 13.9 X Torrent du Fauge (Gémenos) 608 / 670 483 14,1 17/12/19 16h22-17h30

- Point 1 : Station le Charrel (Y4424040) de la DREAL PACA de l'Huveaune à Aubagne


Cette station gérée par la DREAL (n° Y4424040) mesure le débit donné par le bassin versant comprenant le versant Nord de la Ste Baume ainsi que le versant EST de la chaine de l'Etoile (Massif du Garlaban). Elle est influencée par des rejets urbains et industriels de la ville d'Aubagne. La section de mesure est contrôlée par un seuil.


- Point A: Pluvial zone des Paluds

Date	16/12/19
Heure	8h30-9h20
Conductivité électrique (µS/cm)	465
Température (°C)	13,4
Appareil utilisé	WTW H2O
Débit (I/s)	457
Méthode mesure débit	Courantomètre Flomate H2O
Latitude	43°17'46.19"N
Longitude	5°34'58.25"E
Altitude	104,62 m

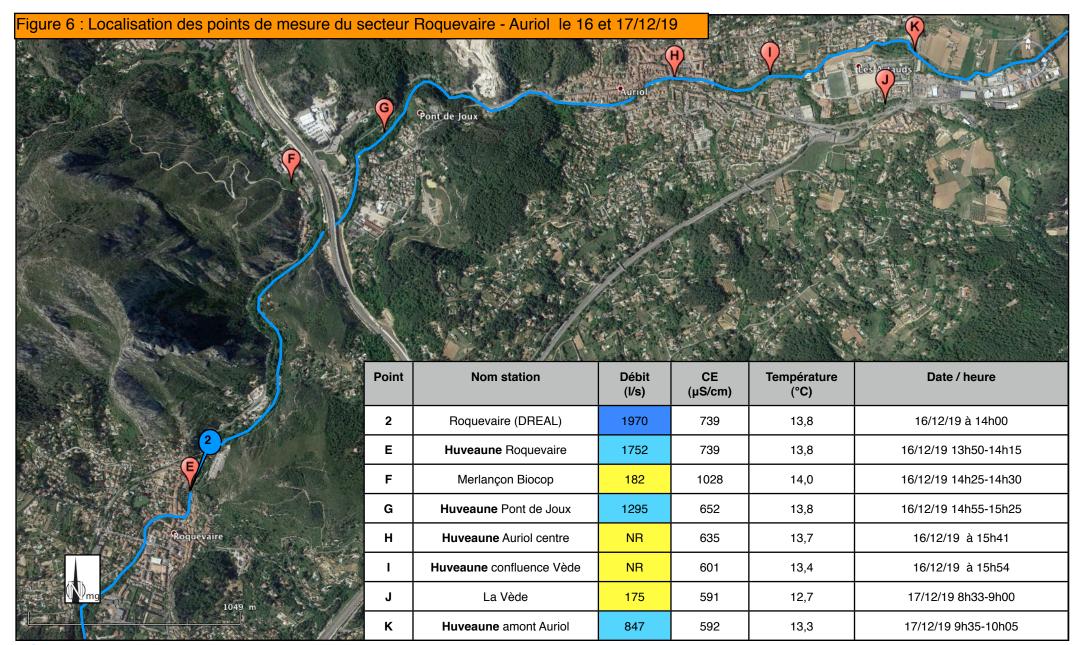
- Point B: <u>Huveaune impasse Sainte-Baume</u>

Date	16/12/19
Heure	9h57-10h32
Conductivité électrique (µS/cm)	749
Température (°C)	13,4
Appareil utilisé	WTW H2O
Débit (I/s)	1797
Méthode mesure débit	Courantomètre Flomate H2O
Latitude	43°17'54.61"N
Longitude	5°35'17.42"E
Altitude	105,02 m

- Point C : <u>Huveaune Beaudinard</u>

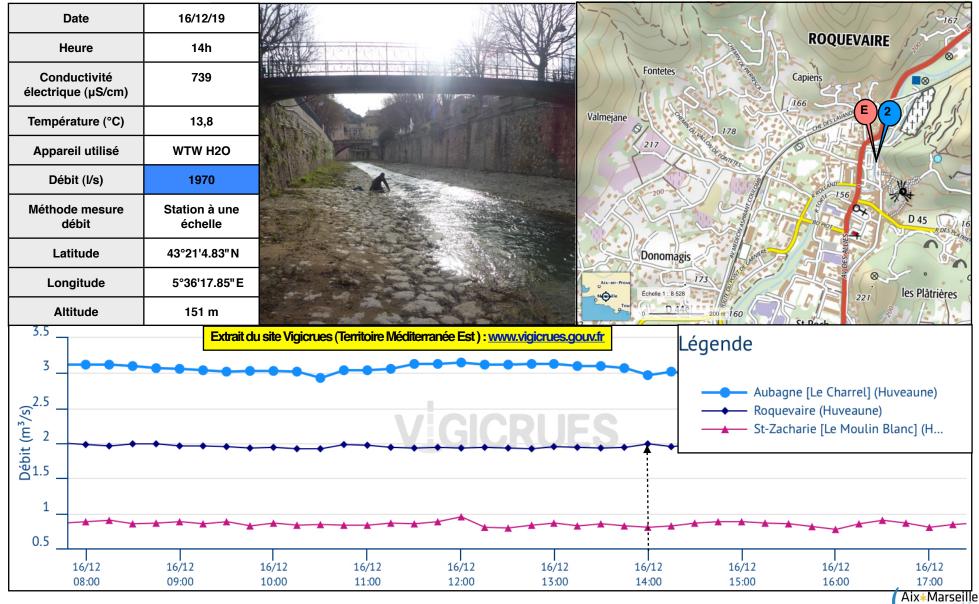
Date	16/12/19	Figure 127 September 127
Heure	11h20-11h50	rande 135
Conductivité électrique (µS/cm)	734	
Température (°C)	13,2	OAS 128 St-Pierre
Appareil utilisé	WTW H2O	Napollon Napollon
Débit (I/s)	1823	June les Jourdans
Méthode mesure débit	Courantomètre Flomate H2O	TA CONTRACTOR OF THE CONTRACTO
Latitude	43°18'57.67"N	D 43e
Longitude	5°35'23.04"E	Ala-en-Proxy Ala-en-Proxy Ala-en-Proxy Figher 1: 8,528
Altitude	115,01 m	Beaudinard Description of the state of the

- Point D : Ruisseau du Riou

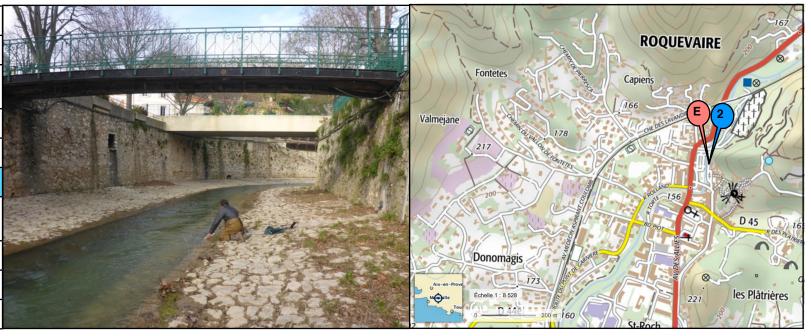

Date	16/12/19
Heure	12h45-13h15
Conductivité électrique (µS/cm)	660
Température (°C)	13,9
Appareil utilisé	WTW H2O
Débit (I/s)	59 et 58
Méthode mesure débit	2 Jaugeages Sel (1010 g et 1052 g)
Latitude	43°19'35.41"N
Longitude	5°35'49.32"E
Altitude	130,23 m

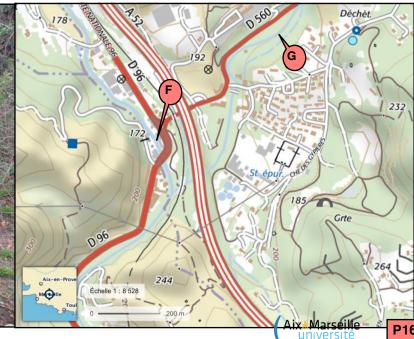
- Point X : Torrent du Fauge (Gémenos, Vallée de Saint-Pons)

4.2) Secteur 2 : Roquevaire / Auriol


Le secteur 2 (figure 6) se situe entre les communes de Roquevaire et Auriol.

- Point 2 : Station Roquevaire (Y4414030) de la DREAL PACA de l'Huveaune à Roquevaire


Cette station gérée par la DREAL (n° Y44144030) mesure le débit apporté par le bassin versant de la haute vallée de l'Huveaune (versant nord de la Ste Baume). La section de mesure est située dans un canal bâti aussi bien en lit mineur qu'en lit majeur.


- Point E : <u>Huveaune Roquevaire</u>

Date	16/12/19
Heure	13h50-14h15
Conductivité électrique (µS/cm)	739
Température (°C)	13,8
Appareil utilisé	WTW H2O
Débit (I/s)	1752
Méthode mesure débit	Jaugeage Sel (5276 g)
Latitude	43°21'5.16"N
Longitude	5°36'17.78"E
Altitude	151,00 m

- Point F : Merlançon biocop

Date	16/12/19	178
Heure	14h25-14h30	
Conductivité électrique (µS/cm)	1028	F
Température (°C)	14,0	1772
Appareil utilisé	WTW H2O	
Débit (I/s)	182	
Méthode mesure débit	Jaugeage Sel (2117 g)	096
Latitude	43°21'54.47"N	
Longitude	5°36'40.91"E	Aix-en-Prove Echelle 1: 8 528
Altitude	171,23 m	7 Tow 0 200 m

- Point G: <u>Huveaune Pont de Joux</u>

Date	16/12/19	178 Pg 7580 Déchèt
Heure	14h55-15h25	192 G
Conductivité électrique (µS/cm)	652	232 232
Température (°C)	13,8	
Appareil utilisé	WTW H2O	
Débit (l/s)	1295	St. épur, ot g
Méthode mesure débit	Courantomètre Flomate H2O	096 Grie
Latitude	43°22'2.43"N	264
Longitude	5°37'1.41"E	Aix-en-Prove Échelle 1 : 8 528
Altitude	171,52 m	7 Tou 0 200 m

- Point H: <u>Huveaune Auriol centre</u>

Date	16/12/19	Day 100 Day
Heure	15h41	le Château 238 Poetacave
Conductivité électrique (µS/cm)	635	Ricrande Riburcios la Glaci
Température (°C)	13,7	189 CHUNGOUTE 190 H
Appareil utilisé	WTW H2O	AURIOL
Débit (I/s)	NR	DAS TILL
Méthode mesure débit	NR	le Défens 231
Latitude	43°22'10.50"N	Auzières
Longitude	5°38'4.65"E	Alx-en-Prove Alx-en-Prove Echelle 1: 8 528
Altitude	188,64 m	Aix Marseille · 265 P1

- Point I: <u>Huveaune confluence Vède</u>

Date	16/12/19
Heure	15h54
Conductivité électrique (µS/cm)	601
Température (°C)	13,4
Appareil utilisé	WTW H2O
Débit (I/s)	NR
Méthode mesure débit	NR
Latitude	43°22'10.98"N
Longitude	5°38'25.24"E
Altitude	193,55 m

Date	16/12/19
Heure	16h00
Conductivité électrique (µS/cm)	622
Température (°C)	13,7
Appareil utilisé	WTW H2O
Débit (I/s)	NR
Méthode mesure débit	NR
Latitude	43°22'12.15"N
Longitude	5°38'28.19"E
Altitude	194,70 m

- Point K': <u>Huveaune amont confluence</u> - Point J': <u>La Vède proche confluence</u>

Date	16/12/19
Heure	16h00
Conductivité électrique (µS/cm)	576
Température (°C)	13,2
Appareil utilisé	WTW H2O
Débit (I/s)	Non validé
Méthode mesure débit	Jaugeage Sel (2111 g)
Latitude	43°22'7.44"N
Longitude	5°38'32.11"E
Altitude	196,73 m

- Point J: La Vède (rond point)

Date	16/12/19	17/12/19	la Bardeline MIE DE LA BARDELINE
Heure	16h52	08h33-9h00	233 K
Conductivité électrique (µS/cm)	582	591	CHE ST PIERRE 213 St-R
Température (°C)	13,2	12,7	CHE DUG TO
Appareil utilisé	WTW H2O	WTW H2O	St. Coll.
Débit (l/s)	Non validé	175	Pre Zone Industrielle D 560
Méthode mesure débit	Jaugeage Sel (2098 g)	Courantomètre Flomate H2O	D 560 205 RTE NATIONALE IS 60 REDE LA STE BARRETE DE LA STE BARRET
Latitude	43°22'6.38"N	1000	206
Longitude	5°38'49.65"E	The second second	Aix-en-Provet All Péage Schelle 1: 8 528 Péage AMCOEIENE 211
Altitude	201,73 m		Toul CT 0 200 m Cate Et M. la Barrière

- Point K : <u>Huveaune amont Auriol</u>

Date	17/12/19	la Bardeline MEDELA BARDELINE
Heure	09h35-10h05	233 K
Conductivité électrique (µS/cm)	592	CHE ST PIERRE 213 St-P
Température (°C)	13,3	CHE DUCL S
Appareil utilisé	WTW H2O	Coll.
Débit (I/s)	847	Pere Zone Industrielle D 560
Méthode mesure débit	Courantomètre Flomate H2O	D 560 205 RIE INATIONALE 560 RIE INATIONALE 560
Latitude	43°22'14.66"N	206
Longitude	5°38'56.12"E	Aix-en-Provet State of the Stat
Altitude	200,24 m	Aix Mark Ballière
ALÉHAN		Aix Margoritate Université Université Université

4.3) Secteur 3 : Pujol / Moulin de Redon

Le secteur 3 (figure 7) se situe entre les communes et lieux-dits de Pujol et Moulin de Redon.

Figure	7 : Localisation des points	de mesur	e du secteu	ır Pujol - Moulir	n de Redon le 17/12/19	
Point	Point Nom station Débit (I/s) CE (μS/cm) Température (°C) Date / heure					
L	Ruisseau des Barres	0	NR	NR	17/12/19 à 10h19	ulin de Redon
М	Huveaune D45d	NR	593	13,5	17/12/19 à 10h23	
N	Ruisseau de la Gastaude	5	611	13,0	17/12/19 à 10h32	
0	Ruisseau de la Papeterie	6	859	13,0	17/12/19 à 10h49	
			70		Moulin de Redon	
- 1		Y	Il your			
					THE WOOD OF THE PARTY OF THE PA	
	to the second					
5 9613			To the			
			TIME			
733— Table 10						
			The state of the s			
		1	註			
		1.16		40		
THIT						
	N _{mg} Le Pujol				© 2019 Google	
	0.10				© 2019 Google	Google Earth

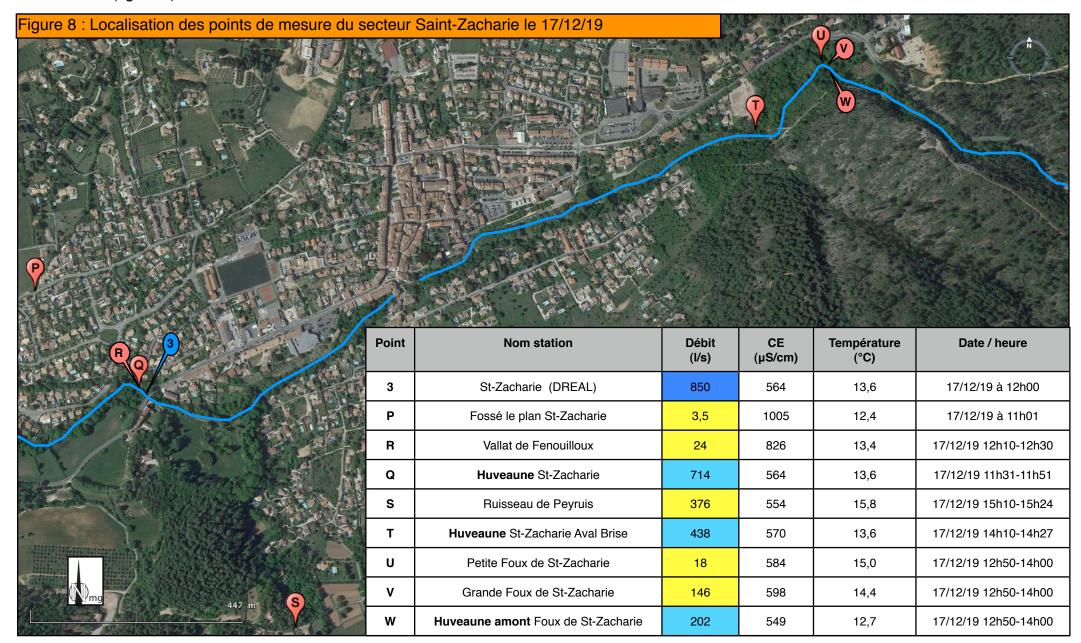
- Point L : Ruisseau des Barres

Date	17/12/19	
Heure	10h19	les Adrets 236 236
Conductivité électrique (µS/cm)	NR	225
Température (°C)	NR	216
Appareil utilisé	WTW H2O	213 St-Pierre Chap.
Débit (l/s)	0	D 45
Méthode mesure débit	NR	D 560 D 560 D 560 O ALDUT 9 MARS 1983 OR DE LACETO
Latitude	43°22'18.88"N	10 RED CLASTERAL 210 P 223 REPUBLISHED PROPERTY OF DISTRIBUTION OF DISTRIBUTIO
Longitude	5°39'20.80"E	St. épur. 283
Altitude	214,68 m	Echele 1; 8 528 7 200 m

- Point M: Huveaune D45d

Date	17/12/19	265
Heure	10h23	les Tourraques Branches
Conductivité électrique (µS/cm)	593	les Barres 236
Température (°C)	13,5	la Mauri
Appareil utilisé	WTW H2O	DA5 230 & la Condamine
Débit (l/s)	NR	C240
Méthode mesure débit	NR	St-Laurent MD 232
Latitude	43°22'31.78"N	adultion of the Pas
Longitude	5°40'8.44"E	Alx-en-Prover Cobable 1 9 509
Altitude	217,64 m	Tout 0 200 m
F	<u> </u>	Aix M

- Point N : Ruisseau de la Gastaude

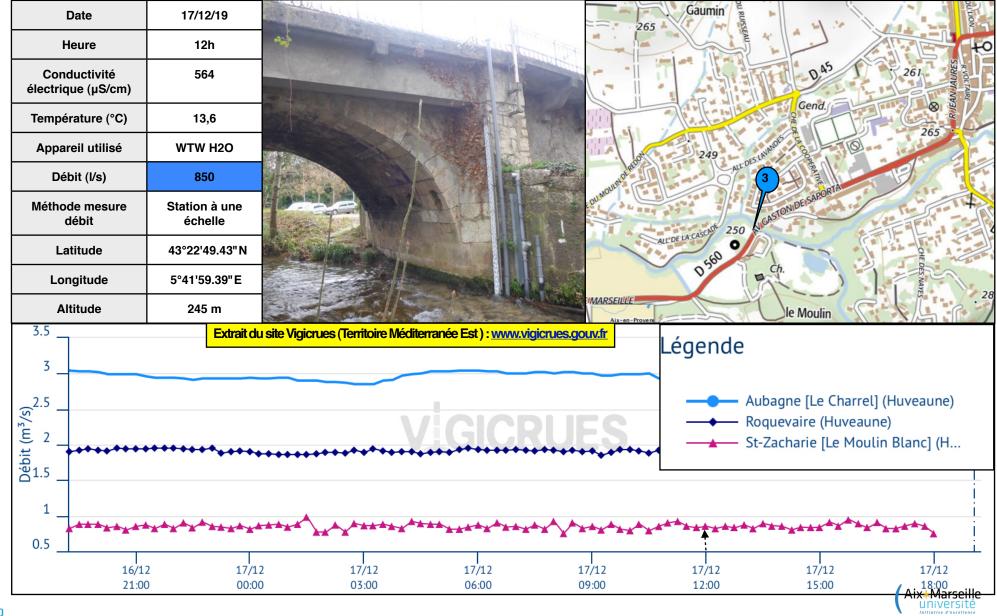

Date	17/12/19
Heure	10h32
Conductivité électrique (µS/cm)	611
Température (°C)	13,0
Appareil utilisé	WTW H2O
Débit (I/s)	5
Méthode mesure débit	Débit estimé
Latitude	43°22'36.60" N
Longitude	5°40'42.95"E
Altitude	230,55 m

- Point O: Ruisseau de la Papeterie

Date	17/12/19	Gaur
Heure	10h49	la Julienne 265
Conductivité électrique (µS/cm)	859	247
Température (°C)	13,0	la Soupriote 242
Appareil utilisé	WTW H2O	les Pères les Pères transfer de la company d
Débit (I/s)	6	D 45
Méthode mesure débit	Mesuré au seau	O St. épůr. St. épůr. RTE I DE MARSEILLE
Latitude	43°22'50.35"N	
Longitude	5°41'6.39"E	Chấteau de Mon
Altitude	233,71 m	Toulo 0 200 m Aix Marsei
		LINGERS LINES LINE

4.4) Secteur 4 : Saint-Zacharie

Le secteur 4 (figure 8) se situe sur la commune de Saint-Zacharie.



- Point 3 : Station St-Zacharie le Moulin Blanc (Y4414015) de la DREAL PACA de l'Huveaune à Saint-Zacharie

Anciennement station d'annonce de crues sur l'Huveaune pour le département du 13, appartient aujourd'hui au réseau vigicrues et gérée par la DREAL (n° Y4414015).

- Point P : Fossé le plan Saint-Zacharie

Date	17/12/19	275
Heure	11h01	Gaun
Conductivité électrique (µS/cm)	1005	la Julienne
Température (°C)	12,4	
Appareil utilisé	WTW H2O	le Plan
Débit (I/s)	3,5	D 45
Méthode mesure débit	Jaugeage au seau	St. épür.
Latitude	43°22'57.23"N	RTE DE IMARSEIULE
Longitude	5°41'47.00"E	Château de Mont
Altitude	247,98 m	Toute 0 200 m

- Point R: Vallat de Fenouilloux

Date	17/12/19	Gaumin 265	4 4 1
Heure	12h10-12h30		0.45
Conductivité electrique (µS/cm)	826	P	Gend.
empérature (°C)	13,4		MANUES &
Appareil utilisé	WTW H2O	R ALLO	Q
Débit (l/s)	24	outube outube	CASTONIDEISAPORITA
hode mesure débit	Jaugeage Sel (1045 g)	ALLEDE LA CASCADO 250	Ch.
_atitude	43°22'50.91"N	MARSEIULE VIMARSEIULE	17
ongitude	5°41'56.99"E	Alx-en-Proven of Alx-en-Proven Echelle 1: 8 528	le Moulin Blanc
Altitude	246,01 m	Toulopati de Montvert	200 m .


- Point Q: <u>Huveaune Saint-Zacharie aval Moulin Blanc</u>

Date	17/12/19
Heure	11h31-11h51
Conductivité électrique (µS/cm)	564
Température (°C)	13,6
Appareil utilisé	WTW H2O
Débit (I/s)	714
Méthode mesure débit	Courantomètre Flomate H2O
Latitude	43°22'49.88"N
Longitude	5°41'58.13"E
Altitude	245,23 m

- Point S: Ruisseau de Peyruis

Date	17/12/19
Heure	15h10-15h24
Conductivité électrique (µS/cm)	554
Température (°C)	15,8
Appareil utilisé	WTW H2O
Débit (I/s)	376
Méthode mesure débit	Jaugeage Sel (2954 g)
Latitude	43°22'33.15"N
Longitude	5°42'16.47"E
Altitude	256,56 m

- Point T: <u>Huveaune Saint-Zacharie aval Brise</u>

Date	17/12/19
Heure	14h10-14h27
Conductivité électrique (µS/cm)	570
Température (°C)	13,6
Appareil utilisé	WTW H2O
Débit (l/s)	438
Méthode mesure débit	Courantomètre Flomate H2O
Latitude	43°23'8.94"N
Longitude	5°43'1.23"E
Altitude	265,08 m

- Point U: Petite Foux de Saint-Zacharie

Heure 12h50-14h00 Conductivité 584
Conductivité 584
lectrique (μS/cm)
Température (°C) 15,0
Appareil utilisé WTW H2O
Débit (I/s) 18
Méthode mesure débit Courantomètre Flomate H2O
Latitude 43°23'14.07" N
Longitude 5°43'7.87" E
Altitude 272,03 m

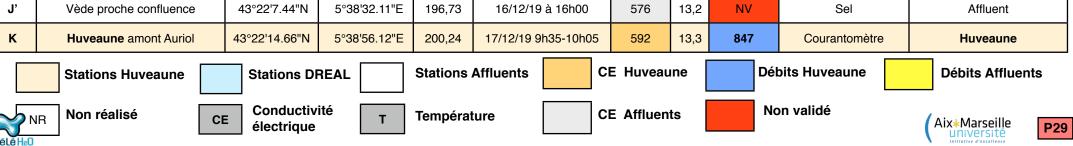
P27

- Point V : Grande Foux de Saint-Zacharie

Date	17/12/19
Heure	12h50-14h00
Conductivité électrique (µS/cm)	598
Température (°C)	14,4
Appareil utilisé	WTW H2O
Débit (I/s)	146
Méthode mesure débit	Courantomètre Flomate H2O
Latitude	43°23'14.07"N
Longitude	5°43'8.49"E
Altitude	272,78 m

- Point W: Huveaune amont Foux de Saint-Zacharie

Date	17/12/19
Date	17/12/19
Heure	12h50-14h00
Conductivité électrique (µS/cm)	549
Température (°C)	12,7
Appareil utilisé	WTW H2O
Débit (I/s)	202
Méthode mesure débit	Courantomètre Flomate H2O
Latitude	43°23'13.42"N
Longitude	5°43'8.42"E
Altitude	270,81 m


P28

5) <u>Tableaux de synthèse de la campagne de Jaugeage du 16 au 17/12/19 sur l'Huveaune et ses affluents</u>

Ci-dessous, la figure 9 représente la synthèse des stations jaugées du secteur 1 et 2.

Figure 9 : Tableau de synthèse du secteur 1 et 2 de la campagne de jaugeages du 16 et 17/12/19

Point	Nom station	Latitude	Longitude	Altitude (m)	Date / heure	CE (µS/cm)	T (°C)	Débit (l/s)	Méthode mesure débit	Remarques	
1	Le Charrel (DREAL)	43°17'21.77"N	5°33'24.62"E	92	16/12/19 à 11h00	NR	NR	3040	Échelle	Huveaune	
Α	Pluvial zone des Paluds	43°17'46.19"N	5°34'58.25"E	104,62	16/12/19 8h30-9h20	465	13,4	457	Courantomètre	Affluent	
В	Huveaune impasse Ste Baume	43°17'54.61"N	5°35'17.42"E	105,02	16/12/19 9h57-10h32	749	13,4	1797	Courantomètre	Huveaune	
С	Huveaune Beaudinard	43°18'57.67"N	5°35'23.04"E	115,01	16/12/19 11h20-11h50	734	13,2	1823	Courantomètre	Huveaune, rejet possible en amont de la mesure	
D	Ruisseau du Riou	43°19'35.41"N	5°35'49.32"E	130,23	16/12/19 12h45-13h15	660	13,9	59 / 58	Sel	Affluent	
х	Torrent du Fauge	43°17'29.68"N	5°38'46.99"E	174,97	17/12/19 16h22-17h30	483	14,1	608 / 670	Sel	Affluent	
2	Roquevaire (DREAL)	43°21'4.83"N	5°36'17.85"E	151	16/12/19 à 14h00	739	13,8	1970	Échelle	Huveaune	
E	Huveaune Roquevaire	43°21'5.16"N	5°36'17.78"E	151,00	16/12/19 13h50-14h15	739	13,8	1752	Sel	Huveaune	
F	Merlançon Biocop	43°21'54.47"N	5°36'40.91"E	171,23	16/12/19 14h25-14h30	1028	14,0	182	Sel	Affluent	
G	Huveaune Pont de Joux	43°22'2.43"N	5°37'1.41"E	171,52	16/12/19 14h55-15h25	652	13,8	1295	Courantomètre	Huveaune	
Н	Huveaune Auriol centre	43°22'10.50"N	5°38'4.65"E	188,64	16/12/19 à 15h41	635	13,7	NR		Huveaune	
ı	Huveaune confluence Vède	43°22'10.98"N	5°38'25.24"E	193,55	16/12/19 à 15h54	601	13,4	NR		Huveaune	
J	La Vède (rond point)	43°22'6.38"N	5°38'49.65"E	201,73	16/12/19 16h52	582	13,2	NV	Sel	Affluent	
J	La Vède (rond point)	43°22'6.38"N	5°38'49.65"E	201,73	17/12/19 8h33-9h00	591	12,7	175	Courantomètre	Affluent	
K'	Huveaune amont confluence	43°22'12.15"N	5°38'28.19"E	194,70	16/12/19 à 16h00	622	13,7	NR		Huveaune	
J'	Vède proche confluence	43°22'7.44"N	5°38'32.11"E	196,73	16/12/19 à 16h00	576	13,2	NV	Sel	Affluent	
К	Huveaune amont Auriol	43°22'14.66"N	5°38'56.12"E	200,24	17/12/19 9h35-10h05	592	13,3	847	Courantomètre	Huveaune	

Ci-dessous, la figure 10 représente la synthèse des stations jaugées du secteur 3 et 4.

Figure 10 : Tableau de synthèse du secteur 3 et 4 de la campagne de jaugeages du 17/12/19

rigare to : tablead de cythinese da costear e et t de la campagne de jaugeages da 17712/16										
Point	Nom station	Latitude	Longitude	Altitude (m)	Date / heure	CE (µS/cm)	T (°C)	Débit (l/s)	Méthode mesure débit	Remarques
L	Ruisseau des Barres	43°22'18.88"N	5°39'20.80"E	214,68	17/12/19 à 10h19	NR	NR	0		Affluent
М	Huveaune D45d	43°22'31.78"N	5°40'8.44"E	217,64	17/12/19 à 10h23	593	13,5	NR		Huveaune
N	Ruisseau de la Gastaude	43°22'36.60"N	5°40'42.95"E	230,55	17/12/19 à 10h32	611	13,0	5	Débit estimé	Affluent
0	Ruisseau de la Papeterie	43°22'50.35"N	5°41'6.39"E	233,71	17/12/19 à 10h49	859	13,0	6	Seau	Affluent
3	St-Zacharie (DREAL)	43°22'49.43"N	5°41'59.39"E	245	17/12/19 à 12h00	564	13,6	850	Échelle	Huveaune
Р	Fossé le plan St-Zacharie	43°22'57.23"N	5°41'47.00"E	247,98	8 17/12/19 à 11h01 1005		12,4	3,5	Seau	Affluent
R	Vallat de Fenouilloux	43°22'50.91"N	5°41'56.99"E	246,01	17/12/19 12h10-12h30	826	13,4	24	Sel	Affluent
Q	Huveaune St-Zacharie	43°22'49.88"N	5°41'58.13"E	245,23	17/12/19 11h31-11h51	564	13,6	714	Courantomètre	Huveaune
S	Ruisseau de Peyruis	43°22'33.15"N	5°42'16.47"E	256,56	17/12/19 15h10-15h24	554	15,8	376	Sel	Affluent
Т	Huveaune St-Zacharie Aval Brise	43°23'8.94"N	5°43'1.23"E	265,08	17/12/19 14h10-14h27	570	13,6	438	Courantomètre	Huveaune
U	Petite Foux de St-Zacharie	43°23'14.07"N	5°43'7.87"E	272,03	17/12/19 12h50-14h00	584	15,0	18	Courantomètre	Affluent - source
V	Grande Foux de St-Zacharie	43°23'14.07"N	5°43'8.49"E	272,78	17/12/19 12h50-14h00	598	14,4	146	Courantomètre	Affluent - source
w	Huveaune amont Foux de St-Zacharie	43°23'13.42"N	5°43'8.42"E	270,81	17/12/19 12h50-14h00	549	12,7	202	Courantomètre	Huveaune
	Stations Huveaune	Stations D	REAL	Stations	Affluents C	E Huvea	une	Dé	bits Huveaune	Débits Affluents

6) <u>Discussion - conclusion</u>

Au total, nous avons réalisé 23 jaugeages en hautes-eaux, 8 sur l'Huveaune, 2 sur des sources et 13 sur ses affluents. Cette campagne de jaugeages en hautes-eaux s'est efforcée d'être la plus exhaustive possible. Nous avons utilisé deux méthodes de jaugeages : le jaugeage chimique (au sel) et le jaugeage au courantomètre. Une critique des jaugeages, préalable à tout report sur le graphique de synthèse (figure 11), est indispensable.

L'examen critique d'éléments tels que la durée du jaugeage, le nombre de verticales (pour le jaugeage au courantomètre), la technique et le matériel utilisés, la section choisie, les zones d'eau mortes, le bon mélange, le bon brassage est souvent suffisant pour estimer le crédit que l'on peut accorder à chaque mesure.

Bref, Il nous faut donc éliminer toutes les mesures qui nous paraissent soit incohérentes, soit perturbées par des problèmes rencontrés sur le terrain et en chercher la cause.

<u>Pour les jaugeages au courantomètre</u> : nous validons toutes les mesures effectuées sur les différentes stations, nous n'avons pas rencontrés de problème particulier, si ce n'est une légère augmentation du niveau d'eau sur la station **C** (Huveaune Beaudinard) due à un rejet (changement de la couleur de l'eau).

<u>Pour les jaugeages chimiques (sel)</u>: la mesure des débits par dilution du sel ne peut s'effectuer que s'il y a un bon brassage de l'eau entre le point d'injection et le point de mesure. Or, ce ne fut pas toujours le cas, notamment pour le ruisseau de la Vède (point **J et J**'). Nous avons donc, réeffectué le débit de la station **J** au courantomètre et éliminé les mesures de débit au sel.

<u>Calcul des erreurs lors des mesures de débit</u> : avant toute chose, il nous faut revenir sur la fiabilité des jaugeages effectués sur le terrain. Un débit est rarement mesuré avec une précision inférieure à 5 %.

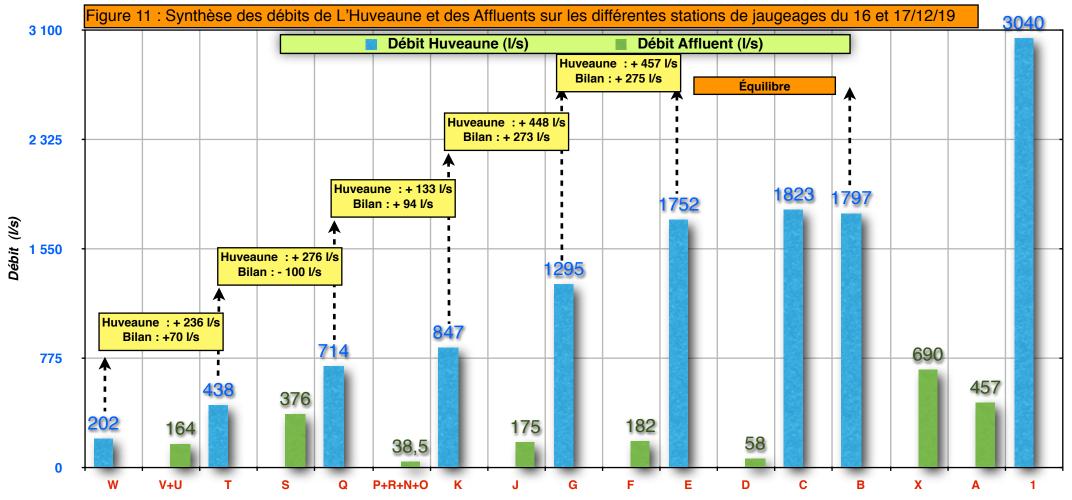
Nous faisons donc un test rapide entre la station DREAL du Moulin Blanc à Saint-Zacharie et la Station **Q** (courantomètre) ainsi qu'entre la station DREAL de Roquevaire et la station **E** (jaugeage au sel) :

Point / Station	Date heure	Q retenu en l/s	Différence entre les 2 débits en l/s	% d'erreurs entre ces 2 mesures		
Q / Huveaune St-Zacharie	17/12/19 11h31-11h51	Q1 = 714	136	16 %		
3 / St-Zacharie (DREAL)	17/12/19 à 12h00	Q2 = 850		- 16 %		

Point / Station	Date heure	Q retenu en l/s	Différence entre les 2 débits en l/s	% d'erreurs entre ces 2 mesures		
E / Huveaune Roquevaire			218	11 %		
2 / Roquevaire (DREAL)	16/12/19 à 14h00	Q2 = 1970		- 11 %		

Lors d'une prochaine campagne il sera intéressant de doubler les mesures sur les stations DREAL, afin de pouvoir faire une comparaison détaillée des résultats obtenues par chaque méthode.

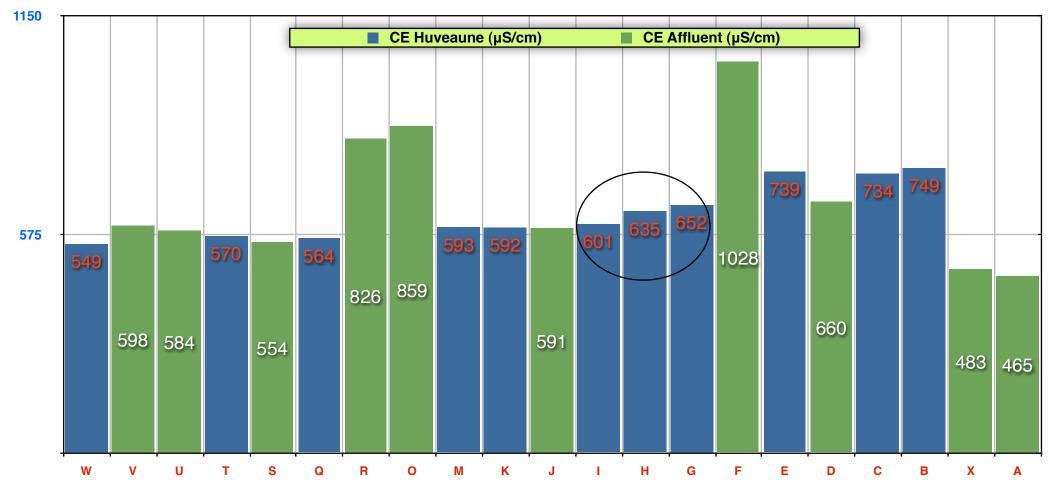
Les données ainsi acquises permettent dès à présent de nouvelles observations. Les affluents de l'Huveaune présentent sur la période du 16 au 17/12/19 :


- des débits faibles pour les ruisseaux de la Barre, le Fossé, la Gastaude, la Papeterie, généralement < 5 l/s, mais leur présence donne de précieuses informations sur les circulations d'eau au centre du bassin.
- des débits moyens pour les ruisseaux du Fenouilloux (23 l/s) et du Riou (59 l/s).
- des débits importants sur les cours d'eau du Fauge (entre 608 et 670 l/s), du Pluvial des Paluds (457 l/s), du Merlançon (182 l/s), la Vède (175 l/s) et le Peyruis (376 l/s). À noter l'apport non négligeable des sources de la Foux de Saint-Zacharie (164 l/s).

Au regard de ces forts et moyens débits, il apparaît que les affluents et sources jaugés aux différentes confluences de l'Huveaune représentent un débit total de 1000 l/s environ en hautes-eaux de Saint-Zacharie à Aubagne (Station Huveaune Impasse Sainte-Baume). Nous ne comptabilisons pas le débit du Fauge (entre 608 et 670 l/s) et celui du pluvial des Paluds (457 l/s), car leurs débouchés se trouvent en aval de la station de mesure. Or, le débit mesuré sur l'Huveaune à la station «Huveaune impasse Sainte-Baume» est d'environ 1800 l/s. Si nous rajoutons le débit initial de l'Huveaune à l'amont de la Foux de Saint-Zacharie (202 l/s) nous totalisons un débit de 1200 l/s. Il y a un écart de l'ordre de 600 l/s.

Ces chiffres traduisent donc des arrivées d'eau alimentant l'Huveaune qui n'ont pas été mesurées (environ 600 l/s, voir figure 11) :

- Entre les stations **W** (Huveaune amont Foux de Saint-Zacharie, 202 l/s) **et T** (Huveaune Saint-Zacharie Aval Brise, 438 l/s), les mesures montrent des arrivées occultes malgré l'apport des sources de la grande et petite Foux de Saint-Zacharie (**V+U** = 164 l/s). Il y a un écart de 70 l/s qui pourrait provenir des sous-écoulements du captage de la Brise.
- Entre les stations **T** (Huveaune Saint-Zacharie Aval Brise, 438 l/s) **et Q** (Huveaune Saint-Zacharie, 714 l/s), Il est possible qu'il y ait une zone de perte, l'apport d'eau du ruisseau de Peyruis (376 l/s) amènerait un excèdent (100 l/s).
- Entre les stations **Q** (Huveaune Saint-Zacharie, 714 l/s) **et K** (Huveaune amont Auriol, 847 l/s) séparées par une distance de 6 km environ, le débit de l'Huveaune s'élèvent à plus de 90 l/s en tenant compte des débits des ruisseaux **P**, **R**, **N et O** (Fenouilloux, Fossé, Papeterie et Gastaude; 38,5 l/s).
- Entre les stations **K** (Huveaune amont Auriol, 847 l/s) **et G** (Huveaune pont de Joux, 1295 l/s), les débits de l'Huveaune montrent une fois de plus un écart de 273 l/s après déduction de l'apport d'eau du ruisseau de la Vède (**J** = 175 l/s).
- Entre les stations **G** (Huveaune pont de Joux, 1295 l/s) et **E** (Huveaune Roquevaire,1752 l/s), les mesures montrent un écart de l'ordre de 275 l/s après déduction de l'apport d'eau du ruisseau de Merlançon (**F**= 182 l/s).
- Entre les stations **E** (Huveaune Roquevaire,1752 l/s), **C** (Huveaune Beaudinard,1823 l/s) et **B** (Huveaune impasse Ste Baume, 1797 l/s), les débits mesurés sont relativement similaires.
- Le débit mesuré en amont d'Aubagne est de l'ordre de 2,25 m³/s (somme de la station **B** Huveaune impasse Ste Baume, 1797 l/s et de la station **A** Pluvial des Paluds, 457 l/s) est nettement inférieur au débit de la station gérée par la DREAL en aval d'Aubagne (Charrel, débit = 3,04 m³/s). Il n'est pour l'instant pas possible d'expliquer cette différence étant donné que cette campagne de débit n'a pas exploré le cours de l'Huveaune entre les deux stations.
- À noter, des disparités au niveau de la conductivité électrique sur les stations I (Huveaune confluence Vède), H (Huveaune Auriol centre) et G (Huveaune pont de Joux) (voir figure 12).



Stations de jaugeage du 16 au 17/12/19

Point	Localisation station	Point	Localisation station	Point	Localisation station	Point	Localisation station	Point	Localisation station	Point	Localisation station
W	Huveaune amont Foux de St-Zacharie	ø	Ruisseau de Peyruis	K	Huveaune amont Auriol	F	Merlançon Biocop	O	Huveaune Beaudinard	A	Pluvial zone des Paluds
V + U	Petite et Grande Foux de St-Zacharie	Q	Huveaune St Zacharie	J	La Vède (rond point)	E	Huveaune Roquevaire	В	Huveaune impasse Ste Baume	1	Huveaune Le Charrel (DREAL)
Т	Huveaune St-Zacharie Aval Brise	P+R+ N+O	Fenouilloux, Fossé Papeterie, Gastaude	G	Huveaune Pont de Joux	D	Ruisseau du Riou	X	Torrent du Fauge		

Figure 12 : Synthèse des CE de L'Huveaune et des Affluents sur les différentes stations de jaugeages du 16 et 17/12/19

Stations de mesure du 16 au 17/12/19

Point	Localisation station	Point	Localisation station	Point	Localisation station	Point	Localisation station	Point	Localisation station	Point	Localisation station	Poin t	Localisation station
W	Huveaune amont Foux St-Zacharie	Т	Huveaune aval Brise St-Zacharie	R	Vallat Fenouilloux	К	Huveaune amont Auriol	Н	Huveaune Auriol centre	E	Huveaune Roquevaire	В	Huveaune imp. Ste Baume
٧	Grande Foux de St- Zacharie	S	Ruisseau de Peyruis	0	Ruisseau Papeterie	J	La Vède (rond point)	G	Huveaune Pont de Joux	D	Ruisseau du Riou	Х	Torrent du Fauge
υ	Petite Foux de St- Zacharie	Q	Huveaune St Zacharie	М	Huveaune D45d	ı	Huveaune confl. Vède	F	Merlançon Biocop	С	Huveaune Beaudinard	A	Pluvial zone des Paluds
	_												Marseille iversité P34

7) **Bibliographie**

Fournillon A., Arfib B., 2009. Campagne d'octobre 2009. Jaugeages des sources et des écoulements de surface de l'Unité du Beausset. 64pp.

Lamarque T., Maurel P., 2014. Etablissement d'une courbe de tarage des débits du cours d'eau du Las réalisée d'août à décembre 2013.103 pp.

Lamarque T., 2015. "Campagne de jaugeage sur le Las et Traçage Artificiel perte du Las à Dardennes janvier et juin-juillet-août 2015".121 pp.

Ministère de l'écologie, du développement durable et de l'énergie : banque hydro DREAL PACA

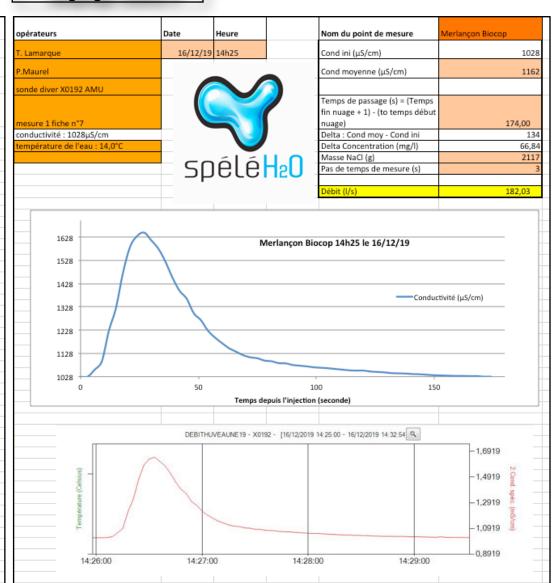
8) Annexes

Jaugeages au sel

Jaugeage station D	p 37
Jaugeage station E	p 38
Jaugeage station F	p 38
Jaugeage station J'	p 39
Jaugeage station J	p 39
Jaugeage station R	p 40
Jaugeage station S	p 40
Jaugeage station X	p 41
Jaugeages au Courantomètre	
Principe du courantomètre	p 42
Jaugeage station A	•
Jaugeage station B	p 45
Jaugeage station C	
Jaugeage station G	p 51
Jaugeage station J	p 54
Jaugeage station K	p 56
Jaugeage station Q	p 58
Jaugeage station T	p 61
Jaugeage station U	p 64
Jaugeage station V	p 65
Jaugeage station W	p <u>66</u>
Station de jaugeages DREAL PACA	
Station DREAL PACA Huveaune Aubagne	
Station DREAL PACA Huveaune Roquevaire	•
Station DREAL PACA Huveaune St-Zacharie	
Station DREAL PACA source de St-Pons Gémenos	<u>p 71</u>

Jaugeage station D Jaugeage station D Nom du point de mesure uisseau du Riou opérateurs Date Heure Nom du point de mesure uisseau du Riou opérateurs Date Heure 16/12/19 12h47 660 16/12/19 13h00 Cond ini (µS/cm) 660 Cond ini (µS/cm) .Maurel Cond moyenne (µS/cm) .Maurel Cond moyenne (µS/cm) 726 831 nde diver X0192 AMU onde diver X0192 AMU Temps de passage (s) = (Temps Temps de passage (s) = (Temps fin nuage + 1) - (to temps début fin nuage + 1) - (to temps début nesure 2 fiche n°4 549,00 nesure 1 fiche n°4 201,00 nuage) Delta: Cond moy - Cond ini conductivité : 660μS/cm Delta: Cond moy - Cond ini 171 onductivité : 660μS/cm 66 Delta Concentration (mg/l) 33,08 empérature de l'eau : 13,9°C Delta Concentration (mg/l) 85,71 mpérature de l'eau : 13,9°C Masse NaCl (g) Masse NaCl (g) 1010 1052 spéléH₂0 spéléH₂0 Pas de temps de mesure (s) Pas de temps de mesure (s) 58,63 Débit (I/s) 57,92 1060 1860 Ruisseau du Riou 13h00 le 16/12/19 Ruisseau du Riou 12h47 le 16/12/19 1010 1660 960 1460 910 Conductivité (µS/cm) Conductivité (µS/cm) 860 1260 810 1060 760 860 710 660 660 0 200 100 300 400 Temps depuis l'injection (seconde) Temps depuis l'injection (seconde) DEBITHUVEAUNE19 - X0192 - [16/12/2019 12:45:00 - 16/12/2019 13:15:36 Q DEBITHUVEAUNE19 - X0192 - [16/12/2019 12:45:00 - 16/12/2019 13:15:36 Q -1,8119 -1,1643 -1,6119 -1,4119 -0.9643-1,2119 -1.0119 -0,7643-0,8119 -0.611912:48:00 12:48:30 12:49:00 12:49:30 12:50:00 12:50:30 -0,5643

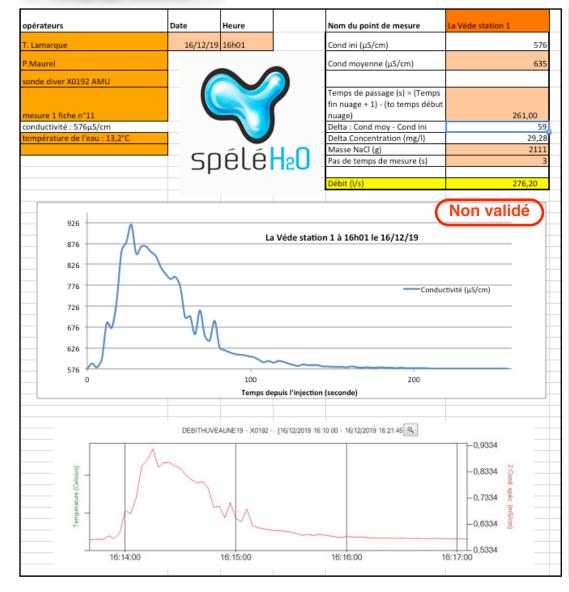
13:07:00

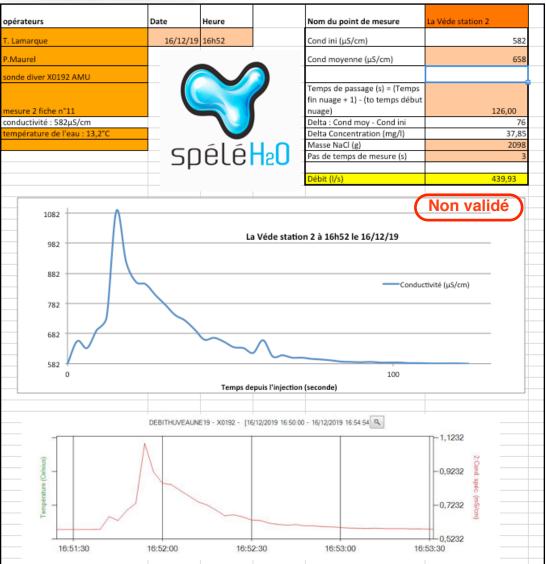

13:08:00

13:09:00

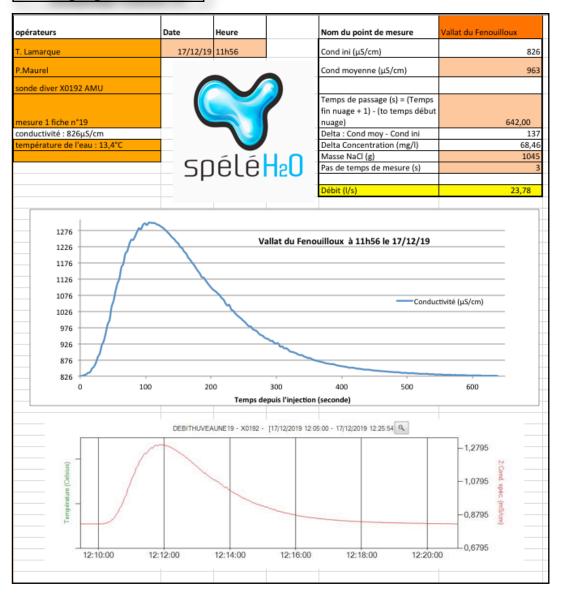
Jaugeage station E

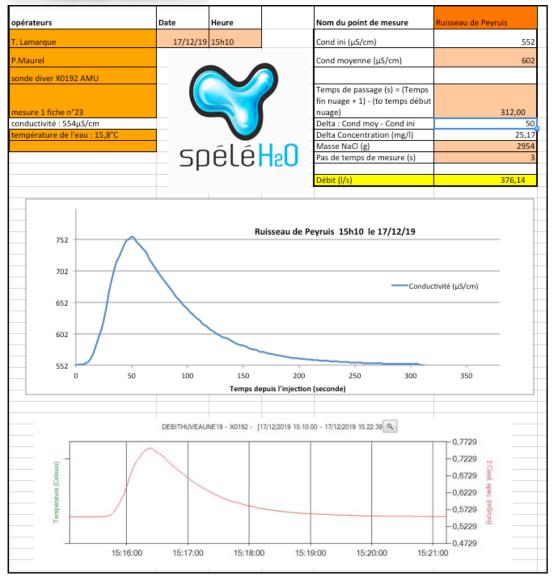
opérateurs Date Heure Nom du point de mesure luveaune Roquevaire 16/12/19 13h59 Cond ini (µS/cm) 740 . Lamarque P.Maurel Cond moyenne (µS/cm) 799 onde diver X0192 AMU Temps de passage (s) = (Temps fin nuage + 1) - (to temps début mesure 1 fiche n°6 102,00 nuage) conductivité : 739µS/cm Delta: Cond moy - Cond ini 59 Delta Concentration (mg/l) 29,53 empérature de l'eau : 13,8°C Masse NaCl (g) /igiecrue Roquevaire 14h : 1,99 m3/s 5276 spéléH₂0 Pas de temps de mesure (s) ébit (I/s) 1 751,71 990 Huveaune Roquevaire 13h59 le 16/12/19 940 890 —Conductivité (μS/cm) 840 790 740 100 Temps depuis l'injection (seconde) DEBITHUVEAUNE19 - X0192 - [16/12/2019 13:50:00 - 16/12/2019 14:01:24 Q -0,9693 -0,9193 -0.8693 -0,8193 -0.7693-0,719313:56:20 13:56:40 13:57:00 13:56:00


Jaugeage station F

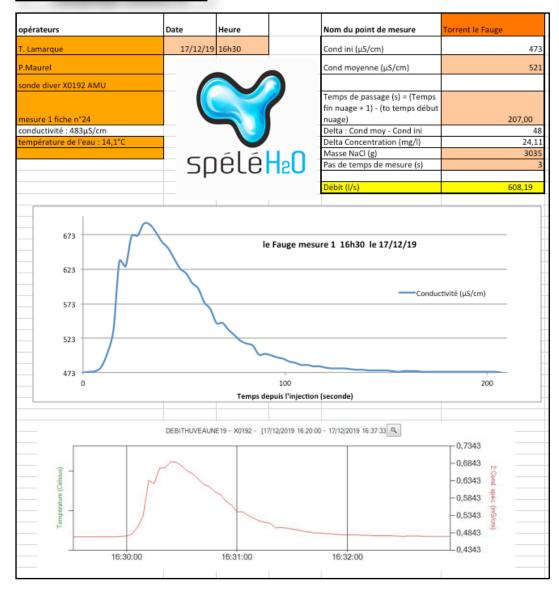


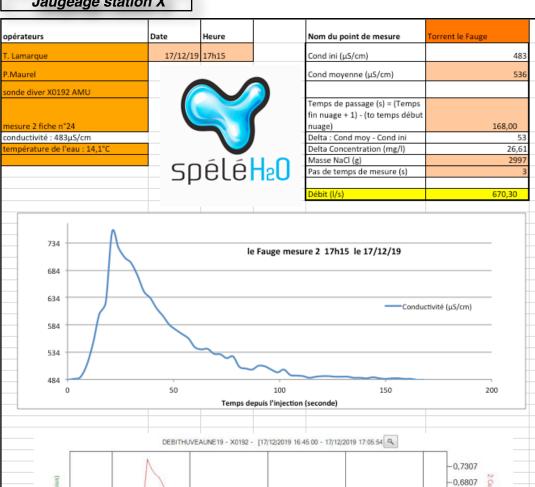
Jaugeage station J'


Jaugeage station J



Jaugeage station R


Jaugeage station S



Jaugeage station X

Jaugeage station X

16:58:00

17:00:00

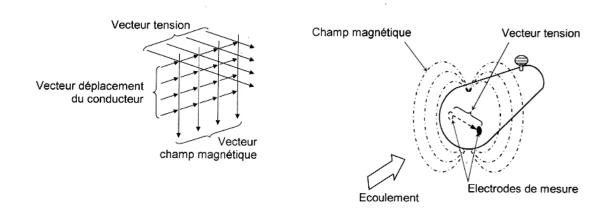
17:01:00

-0,6307

-0,5807

-0,5307

0,4807


-0,4307

Le Principe du courantomètre

<u>La Théorie Faraday</u>: un conducteur électrique se déplaçant à travers les lignes d'un champ magnétique recueille à ses bornes une différence de potentiel dont l'amplitude est proportionnelle au vecteur déplacement. Cette tension induite est alors traitée par l'électronique de façon à être exploitée par l'opérateur.

Le principe de cette méthode consiste donc à calculer le débit à partir du champ de vitesse déterminé dans une section transversale du cours d'eau. Parallèlement à cette exploration du champ de vitesse, on relève le profil en travers du cours d'eau en mesurant sa largeur et en effectuant des mesures de profondeur.

Le débit Q [m^3/s] s'écoulant dans une section d'écoulement S [m^2] d'une rivière peut être défini à partir de la vitesse moyenne V [m/s] perpendiculaire à cette section par la relation : Q = V x S.

Jaugeage station A

Disciples of the Delaste	1 40/40/40	01.00.01.00			
Pluvial zone des Paluds		8h30-9h20			
Station pluvial zone des P			Mesure1		
Opérateur : T.Lamarque, F					
REMPLIR les CASES coloré	s en JAUNE				
w	-				
Temps de mesure en second	e =			10	
Largeur de la rivière en m	=				3,5
Nombre de profil vitesse r					12
Données du tableau ci-cor	ntre				
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la c	olonne "h" à la fi	n du profil			
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
		RESULTAT			
Calcul de Q en m3/s = Calcul de Q en l/s =					0,46 457,00
conducti et température fiche n°01	à 8h30 : 465µS/	cm 13,4°C			
none ii o i					

								-						Ш.		
	Н	X	1		Н	X	2		Н	X	3		Н)	4	
	0,3	0,1			0,38	0,4			0,41	0,7			0,41			
	h		V		h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03		0,1620	0,00	0,03		0,1640	0,00	0,03		0,0610	0,00	0,03		0,1620	0,00
2	0,1		0,2700	0,02	0,1		0,2370	0,01	0,1		0,1750	0,01	0,1		0,2390	0,01
3	0,15		0,3180	0,01	0,15		0,3230	0,01	0,15		0,1770	0,01	0,17		0,3020	0,02
4	0,22		0,2700	0,02	0,22		0,4540	0,03	0,25		0,2480	0,02	0,25		0,3820	0,03
5	0,27		0,2600	0,01	0,3		0,4860	0,04	0,36		0,4050	0,04	0,36		0,4930	0,05
6	fin			0,01	0,36		0,4350	0,03	fin			0,02	fin			0,02
7					fin			0,01								
8																
9																
10																
11																
12																
13																
14																
15				•				•								
16																
17																
18				•				•				•				_
19				•				•				•				•
								•				•				
				0,07				0,13				0,10				0,14
				0,00				0,03				0,03				0,03

Jaugeage station A

										_						
Н	X	5		Н	++	X	6		Н	X	7	1	Н	X	8	
0,41	1,3	3		0,42		1,6	6		0,42	1,9	,		0,42	2,2	0	
	1,3	V		-		1,0	V		-	1,5	V		-	۷,۲	V	
h				h	-				h				h			
0		0,0000		0			0,0000		0		0,0000		0		0,0000	
0,03		0,2290	0,00	0,03			0,3150	0,00	0,03		0,3170	0,00	0,03		0,3630	0,01
0,1		0,2850	0,02	0,1			0,3390	0,02	0,1		0,3440	0,02	0,1		0,4260	0,03
0,17		0,2900	0,02	0,17			0,3360	0,02	0,17		0,3620	0,02	0,17		0,4580	0,03
0,25		0,3500	0,03	0,25			0,4130	0,03	0,25		0,3620	0,03	0,25		0,4520	0,04
0,36		0,4570	0,04	0,36			0,4770	0,05	0,36		0,4040	0,04	0,36		0,4250	0,05
fin		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,02	fin			,	0,03	fin		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,02	0,4		0,4730	0,02
			, .,					, .,				, .,	fin		-,	0,01
			_					•				_				0,01
			_					_				,				,
			_					_								
			<u> </u>													
			•													
			•					•				•				
			•									•				•
			_					_				_				,
			•					•		-		_				•
			_									•				•
			0,13					0,16				0,15				0,18
			0,04		\perp			0,04				0,05				0,05

	_			1			10	1				1			10	1
Н		X	9		Н		10		Н	X	11		Н		12	
0,46		2,5			0,42	2,8			0,43	3,1			0,4	3,4		
h			V		h		V		h		V		h		V	
0			0,0000		0		0,0000		0		0,0000		0		0,0000	
0,03			0,2530	0,00	0,03		0,1810	0,00	0,03		0,1670	0,00	0,03		0,1570	0,00
0,12			0,3860	0,03	0,12		0,2780	0,02	0,12		0,3110	0,02	0,1		0,2420	0,01
0,2			0,4110	0,03	0,2		0,3270	0,02	0,22		0,3560	0,03	0,17		0,1950	0,02
0,3			0,4350	0,04	0,27		0,4260	0,03	0,3		0,3870	0,03	0,25		0,2260	0,02
0,42			0,4590	0,05	0,37		0,4140	0,04	0,4		0,3430	0,04	0,38		0,0540	0,02
fin				0,02	fin			0,02	fin			0,01	fin			0,00
				7				7				•				•
				7				7				•				•
				7				7				•				•
				7				<u> </u>				•				•
				•				•				•				7
				•				•				•				•
				•				•				•				•
				,				,				•				•
				-				•				•				_
				,			-	,				,	-			_
								•	-				-			_
								,								
																-
<u> </u>	_			0,18				0,14				0,13				0,07
				0,18				0,05				0,13				0,07
				0,05				0,05				0,04				0,03

Jaugeage station B

Huveaune impasse Ste Baume	le 16/12/19	9h57-10h32			
station Huveaune impasse Ste B			Mesure1		
Opérateur : T.Lamarque, P.Mauro	el				
REMPLIR les CASES colorés en JA	AUNE				
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					6,4
Nombre de profil vitesse réalisé	=				16
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la colonne	"h" à la fin du p	rofil			
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
		RESULTAT		_	
Calcul de Q en m3/s =					1,80
Calcul de Q en l/s =					1796,85
conducti et température à 9h57	7:749µS/cm 13	3,4°C fiche n°02			
Vigiecrue Aubagne le Charrel le			11h = 3,04m3/s		

	Н	X	1		Н	X	2		Н	X	3		Н	X	4	
	0,58	0,2			0,52	0,5			0,48	0,8			0,46	1,1		
	h		V		h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03		0,2400	0,00	0,03		0,3270	0,00	0,03		0,3110	0,00	0,03		0,2680	0,00
2	0,12		0,4470	0,03	0,12		0,5530	0,04	0,12		0,8130	0,05	0,12		0,6040	0,04
3	0,2		0,5660	0,04	0,25		0,8160	0,09	0,25		0,8220	0,11	0,25		0,8830	0,10
4	0,35		0,7550	0,10	0,38		0,7860	0,10	0,38		0,9900	0,12	0,36		0,9980	0,10
5	0,45		0,6660	0,07	0,5		0,5400	0,08	0,46		0,8750	0,07	0,43		0,9860	0,07
6	0,55		0,5300	0,06	fin			0,01	fin			0,02	fin			0,03
7	fin			0,02												
8																
9																
10																
11																
12																
13																
14																•
15																
16																
17																
18								_				7				
19																
												7				
				0,32				0,33				0,37				0,34
				0,03				0,10				0,10				0,11

Jaugeage station B

		-	1			6	1			7	1		v		
Н	X	5		Н	X	6		Н	X	- /		Н	X	8	
0,44	1,4			0,43	1,7			0,43	2			0,45	2,5		
h		V		h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000		0		0,0000	
0,03		0,3990	0,01	0,03		0,3350	0,01	0,03		0,1870	0,00	0,03		0,4300	0,01
0,12		0,7410	0,05	0,12		0,6590	0,04	0,12		0,5280	0,03	0,12		0,8470	0,06
0,25		0,9500	0,11	0,25		1,0030	0,11	0,25		0,9000	0,09	0,25		1,0260	0,12
0,36		1,0430	0,11	0,38		1,0810	0,14	0,38		1,0860	0,13	0,38		1,0910	0,14
0,43		0,9930	0,07	fin			0,05	fin			0,05	fin			0,08
fin			0,01												
			•				•								
			•								_				
			•				•				7				,
			_				•				*				•
			•				•				•				
			•				•				•				
			•				•				•				
			•				_				_				•
			•				•				,				
			_				,	-			,				•
			_				-	-			-				,
					-			-			_				
			,												,
			0.36				0.35				0.21				0.40
			0,36		-		0,35				0,31				0,40
			0,11				0,11				0,10				0,18

Н	X	9		Н	Х	10		Н	Х	11		Н	X	12	
0,41	3			0,43	3,5			0,4	4			0,34	4,5		
h		V		h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000		0		0,0000	
0,03		0,5430	0,01	0,03		0,3110	0,00	0,03		0,3670	0,01	0,03		0,4970	0,01
0,12		0,9090	0,07	0,12		0,7670	0,05	0,12		0,8410	0,05	0,1		0,6810	0,04
0,25		1,0880	0,07 0,13	0,25		0,9540	0,11	0,22		0,9890	0,09	0,22		0,8690	0,09
0,38		1,1670	0,15	0,38		1,0430	0,13	0,34		1,0330	0,12	0,32		0,9480	0,09
fin			0,04	fin			0,05	fin			0,06	fin			0,02
			*												
															•
			*												
															*
			_												
			•				7				•				•
															_
							_				7				7
			0,38				0,35				0,33				0,25
			0,20				0,18				0,17				0,15

Jaugeage station B

					-											
Н	Y	13		Н	_	X	14		Н	X	15		Н	X	16	1
0,35	5	13		0,35		5.5	14		0,12	6	13		0,03	6,3	10	
h		V		h		5,5	V		h		V		h	0,5	V	
0		0,0000		0			0,0000		0		0,0000		0		0,0000	
0,03		0,3660	0,01	0,03			0,1770	0,00	0,03		0,0640	0,00	0,03		-0,0570	0,00
0,1		0,7910	0,04	0,1			0,3970	0,02	0,1		0,2200	0,01	fin			0,00
0,22		0,8280	0,10	0,22			0,5420	0,06	fin			0,00				•
0,32		0,8200	0,08	0,3			0,6180	0,05								
fin			0,02	fin				0,03								
			-													
								-								,
			,													,
																,
			_					-				,				
<u> </u>			0,25		+			0,16				0,02				0.00
			0,13		_			0,10				0,04				0,00 0,00

Jaugeage station C

Huveaune Beaudinard	le 16/12/19	11h20-11h50			
station Huveaune Beaudinard			Mesure1		
Opérateur : T.Lamarque, P.Maur	el				
REMPLIR les CASES colorés en J	AUNE				
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					7,8
Nombre de profil vitesse réalisé	-				16
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la colonne	e "h" à la fin du p	profil			
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
		RESULTAT			
Calcul de Q en m3/s = Calcul de Q en l/s =					1,82 1823,38
conducti et température à 11h	11:734µS/cm	13,2°C fiche n°03			
Remarques : fluctuation du déb				de rejet en amon	t

	Н	X	1		Н	X	2		Н	X	3		Н	X	4	
	0,2	0,1			0,42	0,4			0,42	0,9			0,43	1,4		
	h		V		h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03		0,2530	0,00	0,03		0,1440	0,00	0,05		0,2900	0,01	0,03		0,3540	0,01
2	0,1		0,3980	0,02	0,12		0,3930	0,02	0,12		0,5220	0,03	0,12		0,6270	0,04
3	0,15		0,3650	0,02	0,24		0,6630	0,06	0,25		0,7120	0,08	0,25		0,7680	0,09
4	fin			0,02	0,37		0,6470	0,09	0,37		0,8440	0,09	0,37		0,7990	0,09
5				<u></u>	fin			0,03	fin			0,04	fin			0,05
6																
7																
8																
9																
10																
11																
12																
13																
14																
15																
16				<u></u>				<u></u>								
17																
18																
19																
				0,06				0,21				0,25				0,28
				0,00				0,04				0,11				0,13

Jaugeage station C

н	X	5		Н	X	6		Н	X	7		н	X	8	
0,43	1,9	3		0,42	2,4			0,27	2,9	,		0,26	3,4	- 0	
h	.,,,	V		h	_, .	V		h	_,_	V		h	-, .	V	
0		0,0000		0		0,0000		0		0,0000		0		0,0000	
0,03		0,3160	0,00	0,03		0,3860	0,01	0,03		0,5260	0,01	0,03		0,6120	0,01
0,12		0,6640	0,04	0,12		0,5070	0,04	0,12		0,8190	0,06	0,1		0,8280	0,05
0,25		0,8540	0,10	0,25		0,7530	0,08	0,2		0,9280	0,07	0,22		0,9220	0,11
0,37		0,8920	0,10	0,37		0,9190	0,10	0,26		0,9420	0,06	fin			0,04
fin			0,05	fin			0,05	fin			0,01				
			0.01				0.07				0.00				0.20
			0,31				0,27				0,20				0,20
			0,15				0,14				0,12				0,10

Н	X	9		Н	X	10		Н	Х	11		Н	X	12	
0,37	3,9			0,42	4,4			0,5	4,9			0,52	5,4		
h		V		h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000		0		0,0000	
0,03		0,5860	0,01	0,03		0,4400	0,01	0,03		0,4850	0,01	0,03		0,3550	0,01
0,12		0,8380	0,06	0,12		0,6790	0,05	0,12		0,7280	0,05	0,12		0,8230	0,05
0,22		0,9280	0,09	0,25		0,8720	0,10	0,25		0,8930	0,11	0,27		0,9030	0,13
0,34		0,9350	0,11	0,38		0,9660	0,12	0,43		0,9870	0,17	0,37		0,8590	0,09
fin			0,03	fin			0,04	fin			0,07	0,48		0,9340	0,10
											<u></u>	fin			0,04
			<u></u>												
															4
											*				
							_				•				7
			r				r				•				'
			•				r				•				·
			•				•								•
			0,30				0,32				0,41				0,41
			0,13				0,15				0,18				0,20

Jaugeage station C

									-							
Н	X	13		н	X	14		н		X	15		н	X	16	
0,5	5,9			0,43	6,4			0,3		6,9			0,22	7,4		
h		V		h		V		h			V		h	, i	V	
0		0,0000		0		0,0000		0			0,0000		0		0,0000	
0,03		0,3410	0,01	0,03		0,3340	0,01	0,03			0,1020	0,00	0,03		0,0290	0,00
0,12		0,6680	0,05	0,12		0,4380	0,03	0,12			0,1530	0,01	0,1		0,1060	0,00
0,25		0,6590	0,09	0,25		0,2920	0,05	0,25			0,1780	0,02	0,19		0,0870	0,01
0,4		0,6730	0,10	0,4		0,3630	0,05	fin				0,01	fin			0,00
0,48		0,5570	0,05	fin			0,01									
fin			0,01													
			0.20				0.15		+			0.04				0.03
			0,30 0,18				0,15 0,11		-			0,04				0,02 0,02
			0,10				0,11					0,05				0,02

Jaugeage station G

Huveaune Pont de Joux	le 16/12/19	14h54-15h25			
station Huveaune Pont de Joux	16 10/12/19	141134-131123	Mesure1		
	-1		mesure i		
Opérateur : T.Lamarque, P.Maur					
REMPLIR les CASES colorés en Ja	AUNE				
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					7,6
Nombre de profil vitesse réalisé	=				14
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la colonne	"h" à la fin du p	profil			
voir exemple ci contre	_				
X: distance/rive en m					
V: vitesse en m/s					
Calcul de Q en m3/s = Calcul de Q en l/s =		RESULTAT			1,30 1295,10
					. 233,10
conducti et température à 14h	53 : 652µS/cm	13,8°C fiche n°08			

										_						
	Н	X	1	1	Н	X	2		Н	X	3		Н	X	4	
	0,54	0,3			0,58	0,8			0,65	1,3			0,66	1,8		
	h		V		h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03		0,1240	0,00	0,03		0,0490	0,00	0,03		0,1560	0,00	0,04		0,1350	0,00
2	0,12		0,1950	0,01	0,15		0,2750	0,02	0,15		0,2800	0,03	0,15		0,3820	0,03
3	0,25		0,3400	0,03	0,25		0,3750	0,03	0,28		0,3770	0,04	0,28		0,4970	0,06
4	0,4		0,2680	0,05	0,38		0,4000	0,05	0,42		0,5840	0,07	0,42		0,4150	0,06
5	0,51		0,1640	0,02	0,54		0,5230	0,07	0,6		0,5770	0,10	0,6		0,5970	0,09
6	fin			0,00	fin			0,02	fin			0,03	fin			0,04
7																
8																
9																
10																
11																
12																
13																
14																
15																
16																
17																
18																
19																
				0.12				0.20				0.27				0.20
				0,13				0,20				0,27				0,28
				0,02				0,08				0,12				0,14

Jaugeage station G

H X 5 0,63 2,3 0,58 2,8 0,55 3,3 0,48 3,8 0,48 3,8 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0	
0,63 2,3 0,58 2,8 0,55 3,3 0,48 3,8 h V h V h V h V h V 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0,03 0,0630 0,00 0,03 0,2620 0,00 0,03 0,2020 0,00 0,03 0,309 0,15 0,4710 0,03 0,15 0,3520 0,04 0,15 0,5460 0,04 0,15 0,544 0,28 0,4780 0,06 0,28 0,5440 0,06 0,28 0,5970 0,07 0,28 0,569 0,41 0,6160 0,07 0,44 0,7040 0,10 0,37 0,6930 0,06 0,43 0,636 0,58 0,6940 0,11 0,54 0,7480 0,07 0,5 0,8550 0,10 fin	
h V h	
0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,00	
0,03 0,0630 0,00 0,03 0,2620 0,00 0,03 0,2020 0,00 0,03 0,309 0,15 0,4710 0,03 0,15 0,3520 0,04 0,15 0,5460 0,04 0,15 0,544 0,28 0,4780 0,06 0,28 0,5440 0,06 0,28 0,5970 0,07 0,28 0,569 0,41 0,6160 0,07 0,44 0,7040 0,10 0,37 0,6930 0,06 0,43 0,636 0,58 0,6940 0,11 0,54 0,7480 0,07 0,5 0,8550 0,10 fin	
0,15	
0,28	0,00
0,41 0,6160 0,07 0,44 0,7040 0,10 0,37 0,6930 0,06 0,43 0,636 0,58 0,6940 0,11 0,54 0,7480 0,07 0,5 0,8550 0,10 fin	0,05
0,58 0,6940 0,11 0,54 0,7480 0,07 0,5 0,8550 0,10 fin	0,07
	0,09
fin 0,03 fin 0,04 0,04	0,03
0.21	0.25
0,31 0,30 0,32 0,15 0,16	0,25 0,14

н	X	9	1	Н	X	10		н	X	11	-
0,47	4,3			0,43	4,8	10		0,39	5,3	- ''	_
h	130	V		h	1,0	V		h	5,5	V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,0790	0,00	0,03		0,1750	0,00	0,03		0,1220	0,0
0,12		0,3220	0,02	0,12		0,2800	0,02	0,12		0,2650	0,0
0,25		0,4190	0,05	0,27		0,3810	0,05	0,25		0,2420	0,0
0,4		0,5590	0,07	0,4		0,4510	0,05	0,35		0,3700	0,0
fin			0,04	fin			0,01	fin			0,0
			*								
			0,18				0,14				0,1
			0,11				0,08				0,0

Jaugeage station G

Н	X	12		Н	X	13		Н	X	14	
0,31	5,8			0,27	6,8			0,18	7,4		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03 0,12 0,25		0,1030	0,00	0,03		0,0330	0,00	0,03		0,0070	0,00
0,12		0,1870	0,01	0,12		0,1090	0,01	0,15		0,0570	0,00
0,25		0,2590	0,03	0,24		0,1510	0,02	fin			0,00
fin			0,02	fin			0,00				
											<u> </u>
											_
			,								_
		-	,								_
			,								-
			,								_
		-	,								_
			_								-
			,								
			,								-
			-				-				-
			0,06				0,03				0,01
			0,04				0,04				0,01

Jaugeage station J

	_				
La Vède	le 17/12/19	8h33-9h00			
station la vède	sous le rond-poin	t	Mesure1		
Opérateur : T.L:	amarque, P.Maure	el			
REMPLIR les CA	SES colorés en JA	AUNE			
Temps de mesure	e en seconde =			10	
Largeur de la riv					3,5
Nombre de prot	fil vitesse réalisé	-			10
Données du tab	leau ci-contre				
H: hauteur du p	rofil en m				
h: hauteur/fond					
NB: mettre "fin	" dans la colonne	"h" à la fin du p	rofil		
voir exemple ci	contre				
X: distance/rive	en m				
V: vitesse en m	/s				
		RESULTAT			
Calcul de Q en r	m3/s =				0,18
Calcul de Q en l	/s =				175,99
conducti et ten	pérature à 8h33	3:591µS/cm 1	2,7°C		
fiche n°11					

		Н																
	Н	\Box	Х	1		Н	X	2	1	Н	X	3		Н	\Box	Х	4	1
	0,06		0,1			0,33	0,4			0,42	0,6			0,56		1		
	h			V		h		V		h		V		h			V	
	0			0,0000		0		0,0000		0		0,0000		0			0,0000	
1	0,03			-0,0190	0,00	0,03		-0,0400	0,00	0,06		-0,0200	0,00	0,03			0,0140	0,00
2	fin				0,00	0,1		-0,0430	0,00	0,12		-0,0090	0,00	0,12			0,0580	0,00
3						0,22		-0,0320	0,00	0,22		-0,0250	0,00	0,25			0,0130	0,00
4						0,3		-0,0380	0,00	0,35		-0,0270	0,00	0,4			0,0230	0,00
5						fin			0,00	fin			0,00	0,51			0,0500	0,00
6														fin				0,00
7																		
8																		
9																		
10																		
11																		
12																		
13																		_
14																		
15		-													-			_
16 17							-											
							-											-
18 19																		
19							-						_					
		+			0,00				-0.01				-0,01		+			0,02
					0,00		-		-0,01 0,00				0,00					0,02
		\perp			0,00				0,00				0,00		\perp			0,00

Jaugeage station J

Н	X	5		Н	X	6		Н	X	7	
0,57	1,5			0,54	1,9			0,48	2,4		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,0570	0,00	0,05		0,0170	0,00	0,05		0,1000	0,00
0,12		0,1340	0,01	0,12		0,1100	0,00	0,12		0,1340	0,01
0,25		0,1360	0,02	0,25		0,2310	0,02	0,25		0,1120	0,02
0,37		0,1380	0,02	0,37		0,2230	0,03	0,35		0,2570	0,02
0,52		0,1500	0,02	0,51		0,2550	0,03	0,44		0,2780	0,02
fin			0,01	fin			0,01	fin			0,01
							7				
			0,07				0,10				0,08
			0,02				0,03				0,04

Н	X	8		Н	X	9		Н	X	10	
0,43	2,7			0,41	3,1			0,2	3,3		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,1980	0,00	0,03		-0,0260	0,00	0,03		0,0470	0,00
0,12		0,2660	0,02	0,12		0,1180	0,00	0,1		0,1690	0,01
0,24		0,3120	0,03	0,23		0,1570	0,02	0,17		0,1570	0,01
0,12 0,24 0,4		0,3980	0,06	0,32		0,1900	0,02	fin			0,00
fin			0,01	0,4		0,2770	0,02				
				fin			0,00				
			0,13				0,06				0,02
			0,13				0,04				0,02
			0,03				0,04				0,01

Jaugeage station K

Huveaune Amont Auriol		9h35-10h05			
station Huveaune amont conflu	ence Vède		Mesure1		
Opérateur : T.Lamarque, P.Mau	rel				
REMPLIR les CASES colorés en .	JAUNE				
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					4,5
Nombre de profil vitesse réalisé	=				11
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
		dit.			
NB: mettre "fin" dans la colonn	e "h" a la fin du p	profil			
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
		RESULTAT			
Calcul de Q en m3/s =					0,85
Calcul de Q en l/s =					847,01
conducti et température à 9h2	28: 592µS/cm 1	3,3°C fiche n°12			

	Н	\vdash	Х	1		н	Х	2		н	X	3		Н	X	4	
	0,04		0,3			0,24	0,5	-		0,41	0,8	J		0,45	1,2	-	
	h		0,5	V		h	0,5	V		h	0,0	V		h	1,2	V	
	0			0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03			0,1980	0,00	0,03		0,0140	0,00	0,03		-0,0017	0,00	0,05		0,4230	0,01
2	fin			-,	0,00	0,1		0,5350	0,02	0,12		0,4520	0,02	0,12		0,6910	0,04
3					,	0,15		0,5880	0,03	0,25		0,5920	0,07	0,25		0,8170	0,10
4					•	0,21		0,6430	0,04	0,37		0,7290	0,08	0,37		1,0550	0,11
5						fin			0,02	fin			0,03	fin		,	0,08
6									•								
7									•								
8																	
9																	
10																	
11																	
12		Ш															
13		\perp															
14		\perp															
15		\perp															
16		\vdash															
17																	
18		\perp															
19																	
		1			0.00				0.10				0.20				0.24
					0,00				0,10				0,20				0,34
					0,00				0,01				0,05				0,11

Jaugeage station K

										_					
Н	X	5		Н	X	6		Н	X	7		Н	Х	8	
0,57	1,7			0,5	2,2			0,46	2,7			0,42	3,1		
h		V		h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000		0		0,0000	
0,03		-0,0090	0,00	0,03		0,2700	0,00	0,03		-0,0025	0,00	0,03		0,0740	0,00
0,12		0,1450	0,01	0,12		0,5900	0,04	0,12		0,1630	0,01	0,12		0,4320	0,02
0,24		0,4430	0,04	0,22		0,6510	0,06	0,22		0,5730	0,04	0,24		0,5590	0,06
0,37		0,6840	0,07	0,34		0,7800	0,09	0,34		0,6470	0,07	0,36		0,5690	0,07
0,5		1,0420	0,11	0,48		0,9520	0,12	0,42		0,6910	0,05	fin			0,03
fin			0,07	fin			0,02	fin			0,03				
			<u> </u>												
			0,30				0,33				0,20				0,19
			0,16				0,16				0,13				0,08

Н	X	9		Н	X	10		Н	X	11	+
0,46	3,5			0,39	4	10		0,24	4,3		_
h	5,5	V		h	-	V		h	4,5	V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,1890	0,00	0,03		-0,0038	0,00	0,03		0,0780	0,0
0,12		0,3220	0,02	0,12		0,1630	0,01	0,1		0,1790	0,0
0,12 0,24		0,3740	0,04	0,24		0,2990	0,03	0,2		0,1210	0,0
0,34		0,5040	0,04	0,37		0,3330	0,04	fin			0,0
0,43		0,4920	0,04	fin			0,01				
fin			0,01								<u></u>
											<u></u>
											<u> </u>
			0.17				0.00				0.0
			0,17 0,07				0,08				0,03

Jaugeage station Q

Huveaune Moulin Blanc	le 17/12/19	11h19			
station 30m en aval de la stat			Mesure1		
Opérateur : T.Lamarque, P.Mau	urel				
REMPLIR les CASES colorés en					
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					5,8
Nombre de profil vitesse réalis	é =				13
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la coloni	ne "h" à la fin du	profil			
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
Calcul de Q en m3/s =		RESULTAT			0,71
Calcul de Q en l/s =					714,15
conducti et température à 11	h19:564µS/cm	13,6°C, fiche	n°18		
Vigiecrue St Zacharie le 17/12					

	0,26	0,2	1		0,31	0,6	2		H 0,34	X	3		H 0,34	1,5	4	_
	h	0,2	V		-	0,6	V		0,34 h		V		0,34 h	1,5	V	
	0		0,0000		0 0		0,0000		0		0,0000		0		0,0000	
1	0,03		-0,0020	0,00	0,03		-0,0001	0,00	0,03		0,0000	0,00	0,03		0,1280	0,00
2	0,03		-0,0020	0,00	0,12		-0,0031	0,00	0,12		0,1070	0,00	0,03		0,1260	0,00
3	0,25		-0,0035	0,00	0,25		-0,0043	0,00	0,12		0,0720	0,01	0,12		0,4890	0,05
4	fin		-0,0033	0,00	fin		-0,0042	0,00	0,31		0,0720	0,01	0,22		0,4910	0,03
5				0,00				,,,,,	fin		0,0450	0,00	fin		0,4310	0,02
6				_			1	,				,,,,,				, ,,,,
7								_				•				•
8				•				,				•				•
9				•				•				•				•
10				_				•				•				•
11								•				•				
12								•				•				
13												7				•
14								•								•
15								_								•
16												•				
17																
18								•				•				
19												•				
												7				
				0,00				0,00				0,03				0,13
				0,00				0,00				0,00				0,04

Jaugeage station Q

Н	X	5		Н	X	6		Н	Х	7		Н	X	8	
0,32	2			0,4	2,5			0,44	3			0,46	3,5		
h		V		h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000		0		0,0000	
0,03		0,2350	0,00	0,05		0,2050	0,01	0,05		0,2300	0,01	0,03		0,3070	0,00
0,12		0,4370	0,03	0,12		0,4500	0,02	0,12		0,4270	0,02	0,12		0,3940	0,03
0,22		0,4980	0,05	0,24		0,5290	0,06	0,25		0,4440	0,06	0,24		0,5030	0,05
0,29		0,5100	0,04	0,35		0,5440	0,06	0,38		0,5150	0,06	0,38		0,5100	0,07
fin			0,02	fin			0,03	fin			0,03	fin			0,04
			0,13				0,17				0,18				0,20
			0,07				0,08				0,09				0,10

Н	X	9		Н	X	10		Н	X	11	
0,52	4			0,55	4,5			0,42	5		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03 0,12 0,24		0,2300	0,00	0,03		0,0060	0,00	0,03		0,2090	0,00
0,12		0,4120	0,03	0,12		0,2310	0,01	0,12		0,3870	0,03
0,24		0,5080	0,06	0,24		0,2910	0,03	0,24		0,4550	0,05
0,37		0,5170	0,07	0,36		0,3380	0,04	0,38		0,4320	0,06
0,47		0,4740	0,05	0,51		0,4330	0,06	fin			0,02
fin			0,02	fin			0,02				
			0,23				0,15				0,16
			0,11				0,10				0,08

Jaugeage station Q

Н	X	12	1	Н	X	13	1
0,23	5,5			0,15	5,7		
h		V		h		V	
0		0,0000		0		0,0000	
0,05 0,1 0,2 fin		0,2690	0,01	0,03		0,0480	0,00
0,1		0,3840	0,02	0,11		0,0270	0,00
0,2		0,3270	0,04	fin			0,00
fin			0,01				•
			*				•
							<u></u>
							<u></u>
			0,07				0,00
			0,06				0,01

Jaugeage station T

Huveaune ST Zacharie aval Brise	le 17/12/10	14610-14627			
station en aval de la station de pompa		141110-141127	Mesure1		
	age de la brise		mesure i		
Opérateur : T.Lamarque, P.Maurel					
REMPLIR les CASES colorés en JAUNE					
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					4,5
Nombre de profil vitesse réalisé =					13
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la colonne "h" a	a la fin du profil				
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
		RESULTAT			
Calcul de Q en m3/s = Calcul de Q en l/s =					0,44 437,97
	70.04.40.00				
conducti et température à 14h02 : 5	70µS/cm 13,6°C 1	iche n°22			

	Н	X	1		Н	Х	2		Н	X	3		Н	X	4	
	0,11	0,2			0,27	0,5			0,3	0,8			0,34	1,1		
	h		V		h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03		-0,0540	0,00	0,03		-0,0110	0,00	0,03		0,0850	0,00	0,03		0,1390	0,00
2	0,08		-0,0480	0,00	0,12		0,0450	0,00	0,12		0,2120	0,01	0,12		0,2970	0,02
3	fin			0,00	0,22		0,0840	0,01	0,24		0,3190	0,03	0,22		0,3220	0,03
4					fin			0,00	fin			0,02	0,3		0,3910	0,03
5													fin			0,02
6																
7																
8																
9																
10																
11																
12																
13																
14																
15																
16																
17				<u></u>												
18																
19																
				0,00				0,01				0,07				0,10
				0,00				0,00				0,01				0,02

Jaugeage station T

Н	X	5		Н	X	6		Н	X	7	
0,35	1,5			0,32	2			0,35	2,5		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,2130	0,00	0,03		-0,0700	0,00	0,03		0,0250	0,00
0,12		0,2890	0,02	0,12		0,1380	0,00	0,12		0,6370	0,03
0,22		0,3110	0,03	0,22		0,5230	0,03	0,22		0,7010	0,07
0,3		0,4090	0,03	0,28		0,5930	0,03	0,28		0,7170	0,04
fin			0,02	fin			0,02	fin			0,05
			_								•
			_				•				_
							•				_
											•
											•
			0,11				0,09				0,19
			0,04				0,05				0,07

Н	X	8		Н	X	9		Н	X	10	
0,41	2,9			0,38	3,2			0,53	3,6		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,1010	0,00	0,03		0,2750	0,00	0,05		0,0520	0,00
0,12		0,3530	0,02	0,12		0,4460	0,03	0,12		0,1740	0,01
0,22		0,4490	0,04	0,22		0,4320	0,04	0,24		0,3930	0,03
0,34		0,6250	0,06	0,33		0,5460	0,05	0,34		0,3940	0,04
fin			0,04	fin			0,03	0,48		0,5570	0,07
								fin			0,03
			0,17				0,16				0,18
			0,07				0,05				0,07

Jaugeage station T

											-
Н	X	11		Н	X	12		Н	X	13	
0,3	3,9			0,2	4,2			0,14	4,4		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,1650	0,00	0,03		0,0560	0,00	0,03		-0,0440	0,00
0,12		0,2950	0,02	0,1		0,0870	0,01	0,1		0,0000	0,00
0,22		0,2710	0,03	0,18		0,0670	0,01	fin			0,00
0,03 0,12 0,22 0,28		0,2810	0,02	fin			0,00				<u></u>
fin			0,01								
			,								
			,								
			,								
											·
											-
			,								ļ
											<u> </u>
			-								-
			0,07				0,01				0,00
			0,04				0,01				0,00

Jaugeage station U

La petite Foux de ST Zacharie	lo 17/12/10	13h35-13h50			
station petite Foux de St Zacharie	le 17/12/19	13033-13030	Mesure1		
			mesure i		
Opérateur : T.Lamarque, P.Maurel REMPLIR les CASES colorés en JAUNE					
REMPLIK IES CASES colores en JAUNE					
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					0,75
Nombre de profil vitesse réalisé =					4
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la colonne "h" à	la fin du profil				
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
		RESULTAT			
Calcul de Q en m3/s = Calcul de Q en l/s =					0,02 18,00
conducti et température à 12h58 : 58	4μS/cm 15,0°C f	fiche n°21			

	Н	X	1		Н	X	2		Н	X	3		Н	X	4	
	0,23	0,1			0,27	0,3			0,27	0,5			0,24	0,7		
	h		V		h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03		0,0510	0,00	0,03		0,0500	0,00	0,03		0,0980	0,00	0,03		0,0610	0,00
2	0,12		0,0830	0,01	0,12		0,2020	0,01	0,12		0,1800	0,01	0,12		0,0700	0,01
3	0,2		0,0780	0,01	0,22		0,1010	0,02	0,22		0,1450	0,02	0,2		0,0510	0,00
4	fin			0,00	fin			0,01	fin			0,01	fin			0,00
5																
6																
7																
8																
9																
10																
11																
12																
13								<u></u>								
14																
15																
16																
17																
18																
19																
				0,02				0,03				0,04				0,01
				0,00				0,00				0,01				0,01

Jaugeage station V

La Foux de ST Zacharie	le 17/12/19	13h15-13h30			
station Foux de St Zacharie			Mesure1		
Opérateur : T.Lamarque, P.Maurel					
REMPLIR les CASES colorés en JAUNE					
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					1,9
Nombre de profil vitesse réalisé =					6
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la colonne "h" à l	a fin du profil				
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
Colorid do O on m2/o		RESULTAT			0.15
Calcul de Q en m3/s = Calcul de Q en l/s =					0,15 145,78
conducti et température à 12h52 du c	oure d'agu amon	t - 590uS/cm 14	8°C fiche n°21		
conducti et temperature à 12h52 du c				°21	
remarques : le débit mesuré est celui di					
emarques : le débit mesuré est celui di	u boulidous et du	i cours d'eau amo	ont		

	н	Х	1		Н	X	2		н	X	3		Н	X	4		Н	X	5		Н	X	6	
	0,17	0,2			0,24	0,5			0.28	0,8			0,25	1,1			0,23	1,4			0,17	1,7		
	h		V		h		V		h		V		h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000		0		0,0000		0		0,0000		0		0,0000	
1	0,03		0,1040	0,00 0,01 0,00 0,00	0,03		0,3140	0,00 0,04 0,05 0,03	0,03		0,2730	0,00 0,03 0,06 0,04	0,03		0,4110	0,01 0,04 0,06	0,03 0,12 0,21		0,2810	0,00 0,03 0,04 0,01	0,04		-0,0070	0,00 0,00 0,01 0,00
2	0,1		0,0590	0,01	0,12		0,6410	0,04	0,12		0,5040	0,03	0,12		0,5630	0,04	0,12		0,4450	0,03	0,1		0,0990	0,00
3	0,15		0,0400	0,00	0,12 0,2 fin		0,6380	0,05	0,22		0,6320	0,06	0,22		0,5410	0,06	0,21		0,4840	0,04	0,15		0,1320	0,01
4	fin			0,00	fin			0,03	fin			0,04	fin			0,02	fin			0,01	fin			0,00
5																								
6																								
7																								
8																								
9																								
10																								
11																								
12																								
13								-																
14								_																
15 16				-				-								_								_
16		-						-																,
18				_								_										-		,
18								-																,
19								-				,				,								,
				0.01		+		0.12				0.13				0.12		_		0.09				0.01
				0,01 0,00				0,12 0,02				0,13 0,04				0,12 0,04				0,09				0,01 0,02
				0,00				UJUE				0,04				0,04				0,03				0,02

Jaugeage station W

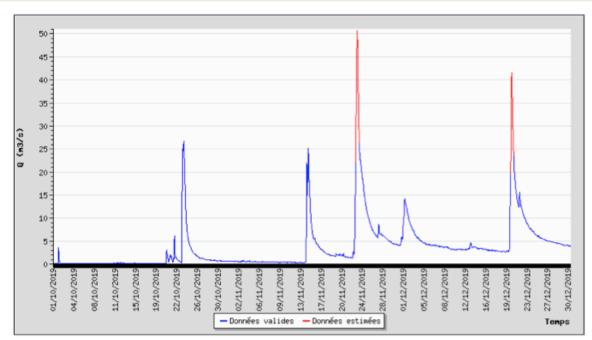
University Ament Ferry de ST Zeebesie	In 17/12/10	12500 12515			
Huveaune Amont Foux de ST Zacharie		13h00-13h15	Mesure1		
station Huveaune amont foux de St Za	cnarie		mesure i		
Opérateur : T.Lamarque, P.Maurel					
REMPLIR les CASES colorés en JAUNE					
Temps de mesure en seconde =				10	
Largeur de la rivière en m =					4
Nombre de profil vitesse réalisé =					9
Données du tableau ci-contre					
H: hauteur du profil en m					
h: hauteur/fond en m					
NB: mettre "fin" dans la colonne "h" à	la fin du profil				
voir exemple ci contre					
X: distance/rive en m					
V: vitesse en m/s					
		RESULTAT			
Calcul de Q en m3/s = Calcul de Q en l/s =					0,20 201,75
conducti et température à 13h04 : 54	19uS/cm 12.7°C	fiche n°20			
- San Section Political Control of San					

	Н	X	1		Н	X	2		Н	X	3	
	0,4	0,2			0,45	0,7			0,46	1,2		
	h		V		h		V		h		V	
	0		0,0000		0		0,0000		0		0,0000	
1	0,03		0,0310	0,00	0,03		0,0390	0,00	0,03		0,1140	0,00
2	0,12		0,0630	0,00	0,12		0,1060	0,01	0,12		0,1350	0,01
3	0,26		0,0400	0,01	0,24		0,1340	0,01	0,24		0,2110	0,02
4	0,37		0,0940	0,01	0,38		0,1730	0,02	0,38		0,2390	0,03
5	fin			0,00	fin			0,01	fin			0,02
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
				0,02				0,06				0,08
				0,00				0,02				0,03

Jaugeage station W

Н	X	4	1	Н	X	5		Н	X	6	
0,48	1,7	,		0,46	2,2			0,39	2,7		
h		V		h		V		h		V	
0		0,0000		0		0,0000		0		0,0000	
0,03		0,0950	0,00	0,03		0,0740	0,00	0,03		0,1200	0,00
0,12		0,1780	0,01	0,12		0,1700	0,01	0,12		0,1680	0,01
0,24		0,2150	0,02	0,24		0,2160	0,02	0,24		0,1550	0,02
0,38		0,2040	0,03	0,38		0,1810	0,03	0,35		0,1450	0,02
0,45		0,2290	0,02	fin			0,01	fin			0,01
fin			0,01								
			0,09				0,08				0,06
			0,04				0,04				0,03

				I	I		I	1		I	I	
Н	Х	7		Н		X	8		Н	X	9	
0,33	3,2			0,26		3,6			0,14	3,9		
h		V		h			V		h		V	
0		0,0000		0			0,0000		0		0,0000	
0,03		0,0650	0,00	0,03			0,0330	0,00	0,03		0,0140	0,00
0,12 0,24		0,0550	0,01	0,1			0,0200	0,00	0,12		0,0410	0,00
0,24		0,0860	0,01	0,22			0,0260	0,00	fin			0,00
fin			0,01	fin				0,00				
_												
												,
_	-		,									,
												,
												,
												,
	_		0,02					0,01				0,00
			0,02					0,01				0,00
			0,02					0,01				0,00


QTFIX : débits à pas de temps de 1 heure(s) Période du 01/10/2019 00:00 au 31/12/2019 00:00

L'Huveaune à Aubagne [Le Charrel]

Code station: Y4424040 Producteur: DREAL PACA

Bassin versant: 245 km² E-mail: HYDRO.uema.sbep.dreal-paca@developpement-durable.gouv.fr

Graphique statistique


QTFIX : débits à pas de temps de 1 heure(s) Période du 01/10/2019 00:00 au 31/12/2019 00:00

L'Huveaune à Roquevaire [2]

Code station: Y4414030 Producteur: DREAL PACA

Bassin versant: 165 km² E-mail: HYDRO.uema.sbep.dreal-paca@developpement-durable.gouv.fr

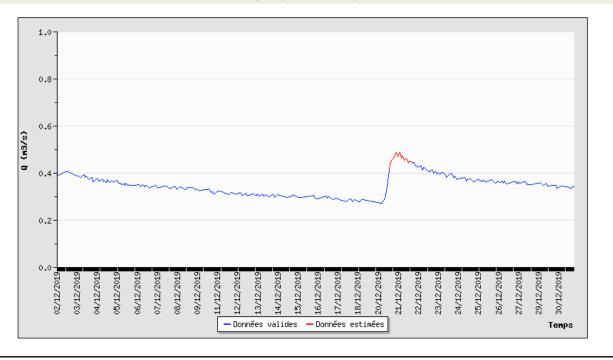
Graphique statistique

QTFIX : débits à pas de temps de 1 heure(s) Période du 01/10/2019 00:00 au 31/12/2019 00:00

L'Huveaune à Saint-Zacharie [Le Moulin blanc]

Code station: Y4414015 Producteur: DREAL PACA

Bassin versant: 55 km² E-mail: HYDRO.uema.sbep.dreal-paca@developpement-durable.gouv.fr


QTFIX : débits à pas de temps de 1 heure(s) Période du 02/12/2019 00:00 au 31/12/2019 00:00

La source de Saint-Pons à Gémenos

Code station: Y4425010 Producteur: DREAL PACA

Bassin versant: 13 km² E-mail: HYDRO.uema.sbep.dreal-paca@developpement-durable.gouv.fr

Graphique statistique

